这一题比赛时纠结了好久才发现()()()...的形式是最优的,因为这样除了配对的括号之外,两个()之间可以有更多的组合。而((()))就不及前一种形式。
组合数就是单个配对的括号数,e.g., () +任意两个()及其中间的配对括号的数目, e.g., ()()...()()。我开始还以为要用组合数计算,后来发现就是(n-1)n/2
#include<iostream>
#include<stdio.h>
#include<cstdio>
#include<stdlib.h>
#include<vector>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<stack>
#include<queue>
#include<ctype.h>
#include<map>
#include<time.h>
#include<set>
#include<bitset>
#include<sstream>
using namespace std;
//Google APAC2017 Round B Problem A. Sherlock and Parentheses
const int maxn=100010;
int T;
long long L;
long long R;
long long ans;
long long comb[maxn][maxn];
void init()
{
memset(comb,0,sizeof(comb));
comb[0][0]=1;
for(int i=0;i<maxn;i++)
{
comb[i][0]=1;
comb[i][i]=1;
}
for(int i=1;i<maxn;i++)
{
for(int j=1;j<2;j++)
{
comb[i][j]=comb[i-1][j]+comb[i-1][j-1];
//cout<<i<<" "<<j<<" "<<comb[i][j]<<endl;
}
}
}
int main()
{
freopen("A-large.in","r",stdin);
freopen("B-small-practice.out","w",stdout);
scanf("%d",&T);
// init();
for(int ca=1;ca<=T;ca++)
{
scanf("%lld %lld",&L,&R);
ans=0;
long long tmp=min(L,R);
ans=tmp+tmp*(tmp-1)/2;
printf("Case #%d: %lld\n",ca,ans);
}
return 0;
}