QAOA算法
量子近似优化算法(QAOA), 是由Farhi, Goldstone和Gutmann开发的一个多项式时间算法,用于寻找“最优化问题的一种’好’的解决方案。对于给定的NP-Hard问题,近似算法是一种多项式时间算法,QAOA算法以期望的一些质量保证来解决每个问题实例。品质因数是多项式时间解的质量与真实的质量之间的比率。
1. 优化求解中的NP-hard问题学习
所谓的NP-hard,指所有NP问题都能在多项式时间复杂度内归约到的问题。
1.1 时间复杂度
时间复杂度并不是表示一个程序解决问题需要花费的多少时间,而是当问题规模扩大后,程序的需要的时间长度增长的有多快。也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的速率不能衡量一个程序的好坏,而应该看到当这个数据的规模变大到数百倍后,程序运行的时间是否还是一样,有可能也跟着慢了数百倍。不管数据有多大,程序处理花费的时间始终是那么多的,我们就说这个程序好,具有 O ( 1 ) O(1) O(1)的时间复杂度,也称常数级复杂度;数据规模变得多大,花的时间也跟着变得有多长,这个时间复杂度就是 O ( n ) O(n) O(n)例如查找n个数中的最大值就是 O ( n ) O(n) O(n)复杂度。而像冒泡排序,插入排序等,数据扩大2倍,时间变慢4倍,属于 O ( n 2 ) O(n^2) O(n2)的复杂度。还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是 O ( a n ) O(a^n) O(an)的指数级复杂度,甚至 O ( n ! ) O(n!) O(n!)的阶乘级复杂度。注意,不会存在 O ( 2 n 2 ) O(2n^2) O(2n2)的复杂度,因为前面的系数2不会影响到整个程序的时间增长。同样地, O ( n 3 + n 2 ) O(n^3+n^2) O(n3+n2)的复杂度也就是 O ( n 3 ) O(n^3) O(n3)的复杂度, 因为后者的复杂度随着增长会远远超过后者。因此我们会说,一个 O ( 0.01 n 3 ) O(0.01n^3)