2017.11.13
3D Face Recognition Using Corresponding Point Direction Measure and Depth Local Features (IS2010)
对应点方向测量+深度局部特征
步骤:
- ICP 对齐:Iterative Closet Point (ICP) to align all 3D faces with the first 3D face
- 去噪:reduce noise,especially the noise which in front of the face, and remove the spikes
- 鼻尖检测->人脸检测:detect the nose tip point. Once the nose tip is found, crop a region, which is defined by a sphere radius of 100 mm centered at the nose tip
- CPDM 人脸匹配:Corresponding Point Direction Measure (CPDM) to matching the 3D face with the gallery 3D faces and get the score
- 构建深度图,获取三种特征:use the region to construct depth image, and get the Gabor feature, LBP feature, principle component of the depth image
- 融合特征,实现人脸识别:fuse the CPDM result, Gabor feature,LBP feature, and principle component of depth image to finish the recognition
流程图:
3D人脸匹配
- CPDM( Corresponding Point Direction Measure)
目标:计算具有同样方向的两个对应人脸的点率,computing the rate of points of the two corresponding faces that have the same direction
算法流程:
C is a set while α is a constraint of the angle between two normal vector, use α = 5 in the following experiments
- Gabor feature:保护人脸的特征不变invariant feature of face
在特征提取中对rotation,scale,translation保持不变性
- LBP:纹理描述子
- PCA:保护主要信息
- 匹配结果:融合CPDM和三个特征,取CPDM匹配最大值+主成分匹配的最小差距
ps:
数据库:CASIA
结果:ROC、FRR、FAR