<!--[if !supportLists]-->15. <!--[endif]-->计算本开发环境中BUFFER的命中率
缓冲池是内存中的一块存储区域,用于临时读入和更改数据库页(包含表行或索引项)。缓冲池的用途是为了提高数据库系统的性能。从内存访问数据要比从磁盘访问数据快得多。因此,数据库管理器需要从磁盘读取或写入磁盘的次数越少,性能就越好。对一个或多个缓冲池进行配置之所以是调优的最重要方面,是因为连接至数据库的应用程序的大多数数据(不包括大对象和长字段数据)操作都在缓冲池中进行。 缺省情况下,应用程序使用缓冲池 IBMDEFAULTBP,它是在创建数据库时创建的。当 SYSCAT.BUFFERPOOLS 目录表中该缓冲池的 NPAGES 值为 -1 时,DB2 数据库配置参数 BUFFPAGE 控制着缓冲池的大小。否则会忽略 BUFFPAGE 参数,并且用 NPAGES 参数所指定的页数创建缓冲池。 建议对于仅使用一个缓冲池的应用程序,将 NPAGES 更改成 -1,这样 BUFFPAGE 就可以控制该缓冲池的大小。这使得更新和报告缓冲池大小以及其它 DB2 数据库配置参数变得更加方便。
<!--[if !supportLists]-->n <!--[endif]-->查看bufferpools:
$ db2 get db cfg for coredb |grep BUFF
Buffer pool size (pages) (BUFFPAGE) = 1000
<!--[if !supportLists]-->n <!--[endif]-->计算命中率:
db2 "update monitor switches using lock ON sort ON bufferpool ON uow ON table ON statement ON"
db2 "get snapshot for all bufferpools"
在数据库快照或缓冲池快照的快照输出中,查找下列"logical reads"和"physical reads",这样就可以计算出缓冲池命中率,它可以帮助调优缓冲池:
缓冲池命中率表明数据库管理器不需要从磁盘装入页(即该页已经在缓冲池中)就能处理页请求的时间百分比。缓冲池的命中率越高,使用磁盘 I/O 的频率就越低。按如下计算缓冲池命中率:
(1 - ((buffer pool data physical reads + buffer pool index physical reads) /
(buffer pool data logical reads + pool index logical reads))
) * 100%
这个计算考虑了缓冲池高速缓存的所有页(索引和数据)。理想情况下,该比率应当超过 95%,并尽可能接近 100%。
$ db2 "get snapshot for all bufferpools"|grep logical
Buffer pool data logical reads = 200
Buffer pool temporary data logical reads = 0
Buffer pool index logical reads = 0
Buffer pool temporary index logical reads = 0
$ db2 "get snapshot for all bufferpools"|grep physical
Buffer pool data physical reads = 0
Buffer pool temporary data physical reads = 0
Buffer pool index physical reads = 0
Buffer pool temporary index physical reads = 0
这个计算考虑了缓冲池高速缓存的所有页(索引和数据)。理想情况下,该比率应当超过 95%,并尽可能接近 100%。要提高缓冲池命中率,请尝试下面这些方法: 增加缓冲池大小。
考虑分配多个缓冲池,如果可能的话,为每个经常被访问的大表所属的表空间分配一个缓冲池,为一组小表分配一个缓冲池,然后尝试一下使用不同大小的缓冲池以查看哪种组合会提供最佳性能。
如果已分配的内存不能帮助提高性能,那么请避免给缓冲池分配过多的内存。应当根据取自测试环境的快照信息来决定缓冲池的大小。
太小的缓冲池会产生过多的、不必要的物理 I/O。太大的缓冲池使系统处在操作系统页面调度的风险中并消耗不必要的 CPU 周期来管理过度分配的内存。正好合适的缓冲池大小就在"太小"和"太大"之间的某个平衡点上。适当的大小存在于回报将要开始减少的点上。
<!--[if !supportLists]-->n <!--[endif]-->修改bufferpools:
方法一:
Select npages from syscat.bufferpools
Alter bufferpool ibmdefaultbp immediate size 20000
方法二:
Create bufferpool hisdbbp1 immediate size 2500 pagesize 32k
Alter tablespace syscatspace bufferpool hisdbbp1
<!--[if !supportLists]-->16. <!--[endif]-->存储过程的建立及维护
项目组暂时没有使用DB2存储过程
<!--[if !supportLists]-->17. <!--[endif]-->Group BY、HAVING命令的使用
GROUP BY是SELECT语句的从句,用来指定查询分组条件,主要用来对查询的结果进行分组,相同组合的分组条件在结果集中只显示一行记录。使用GROUP BY从句时候,通过添加聚合函数(主要有COUNT()、SUM、MAX()、MIN()等)可以使数据聚合。GROUP BY插叙列中使用聚合函数是针对每个分组的。
GROUP BY用来指定分组条件,是一个数学集合的概念,比如针对一列进行分组,则组合分组条件的集合数为1。如果有两个分组条件,则组合分组条件的集合数为2。因此带有GROUP BY的查询一般成为分组查询,也叫组合查询。组合记录的多少取决于组合集合(不包含重复元素)中元素的个数。例如,组合条件为一列,则查询结果集记录条数应该等于这个列所有字段所组成(数学意义上的)集合的元素个数(NULL字段也算一个)。如果有两个组合列,则记录数等于实际中存在的两个列所组合的数目。
GROUP BY组合列必须出现查询的SELECT关键字后面,相同组合条件的情况下仅仅保留一个。因此,通过SELECT...GROUP BY查询出的各个列都应该是数目相同,要达到相同的目的,有两种途径:一种是将要查询的字段放到组合条件中,一种是在非组合条件的字段上使用聚合函数,当然也可以在组合列上聚合函数。处子之外,别无它法!如果查询的各个列结果数目不相等,则结果集会出现“不能对齐”的错误。 因此,将非组合条件的列在不使用聚合函数条件下放到要查询的列中,这种做法是完全错误的。
GROUP BY在做组合查询的时候,会对NULL的分组单独形成一行,进行统计。参看上面的SQL。
GROUP BY对组合条件列来说,本身就会自动分组(剔除重复的列),因此在组合条件的列上应用DISTINCT关键字是多于的。但是用在非组合条件(都有聚合函数)的列上使用DISTINCT却不是多余的。GROUP BY不但可以对列组合,还可以对列的表达式进行组合。
可以在SELECT ... GROUP BY 分组后筛选数据。筛选的关键字是HAVING。HAVING的作用和WHERE类似。都是用来过滤查询的中间记录。但是,HAVING从句指定的每个列规范必须出现在一个聚合函数内,或者出现在GROUP BY从句命名的列中。与WHERE不同的是:WHERE是在分组前(查询后)筛选数据;HAVING是在分组后筛选数据。
SELECT SUBSTR(A.HYLB_DM,1,2),COUNT(*),SUM(A.ZCZB) FROM DJ_ZT A
GROUP BY SUBSTR(A.HYLB_DM,1,2)
HAVING MAX(YEAR(A.CJRQ))<>2007;