单点修改,区间查询,优化方法:sqrt到一定程度,数为0,向上传标记,下次再修改时,如果有标记,则不修改,提高修改的时间。区间查询和普通的一样。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
using namespace std;
int n,m;
ll a[100005];
struct Tree{
int l,r;
ll sum;
bool flag;
}tre[100005<<2];
void pushup(int rt)
{
tre[rt].sum =tre[rt<<1].sum+tre[rt<<1|1].sum;
tre[rt].flag =tre[rt<<1].flag & tre[rt<<1|1].flag;
}
void build(int rt,int L,int R)
{
tre[rt].l=L;
tre[rt].r=R;
if(L==R)
{
tre[rt].sum =a[L];
if(a[L]==1 || a[L]==0) tre[rt].flag =1;
return ;
}
int mid=(L+R)>>1;
build(rt<<1,L,mid);
build(rt<<1|1,mid+1,R);
pushup(rt);
}
void update(int rt,int L,int R)
{
if(tre[rt].flag)return;
if(tre[rt].l==tre[rt].r)
{
tre[rt].sum=(ll)sqrt(tre[rt].sum);
if(tre[rt].sum==1 || tre[rt].sum==0) tre[rt].flag =1;
return;
}
int mid=(tre[rt].l+tre[rt].r)>>1;
if(L<=mid)
update(rt<<1,L,R);
if(R>mid)
update(rt<<1|1,L,R);
pushup(rt);
}
ll query(int rt,int L,int R)
{
if(L<=tre[rt].l && R>=tre[rt].r)
{
return tre[rt].sum;
}
int mid=(tre[rt].l+tre[rt].r)>>1;
ll sm=0;
if(L<=mid)
sm=query(rt<<1,L,R);
if(R>mid)
sm+=query(rt<<1|1,L,R);
return sm;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
build(1,1,n);
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
int k,x,y;
scanf("%d%d%d",&k,&x,&y);
if(x>y) swap(x,y);
if(k==2)update(1,x,y);
else printf("%lld\n",query(1,x,y));
}
return 0;
}