题目描述
只要一个由 N×M 个小方块组成的旗帜符合如下规则,就是合法的图案。
- 从最上方若干行(至少一行)的格子全部是白色的;
- 接下来若干行(至少一行)的格子全部是蓝色的;
- 剩下的行(至少一行)全部是红色的;
现有一个棋盘状的布,分成了 N 行 M 列的格子,每个格子是白色蓝色红色之一,小 a 希望把这个布改成合法图案,方法是在一些格子上涂颜料,盖住之前的颜色。
小 A 很懒,希望涂最少的格子,使这块布成为一个合法的图案。
输入格式
第一行是两个整数 N,M。
接下来 N 行是一个矩阵,矩阵的每一个小方块是 W
(白),B
(蓝),R
(红)中的一个。
输出格式
一个整数,表示至少需要涂多少块。
输入输出样例
输入 #1复制
4 5 WRWRW BWRWB WRWRW RWBWR
输出 #1复制
11
说明/提示
样例解释
目标状态是:
WWWWW
BBBBB
RRRRR
RRRRR
一共需要改 11 个格子。
数据范围
对于 100% 的数据,N,M≤50。
代码:
1.深搜思想:
#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 50;
const int MAX_M = 50;
int N, M;
char grid[MAX_N][MAX_M];
int cost[MAX_N][3]; // cost[i][0]: W, [1]: B, [2]: R
int min_changes = INT_MAX;
void dfs(int row, int white_rows, int blue_rows, int current_cost, int current_color) {
if (row == N) {
if (white_rows >= 1 && blue_rows >= 1 && (N - white_rows - blue_rows) >= 1) {
min_changes = min(min_changes, current_cost);
}
return;
}
// 当前行可以选择涂的颜色取决于当前所处的颜色阶段
// 0: 白色阶段,1: 蓝色阶段,2: 红色阶段
if (current_color == 0) {
// 可以选择继续白色或切换到蓝色
dfs(row + 1, white_rows + 1, blue_rows, current_cost + cost[row][0], 0);
if (white_rows >= 1) {
dfs(row + 1, white_rows, blue_rows + 1, current_cost + cost[row][1], 1);
}
} else if (current_color == 1) {
// 可以选择继续蓝色或切换到红色
dfs(row + 1, white_rows, blue_rows + 1, current_cost + cost[row][1], 1);
if (blue_rows >= 1) {
dfs(row + 1, white_rows, blue_rows, current_cost + cost[row][2], 2);
}
} else {
// 只能继续红色
dfs(row + 1, white_rows, blue_rows, current_cost + cost[row][2], 2);
}
}
int main() {
cin >> N >> M;
for (int i = 0; i < N; ++i) {
for (int j = 0; j < M; ++j) {
cin >> grid[i][j];
}
}
// 预处理每行涂成W/B/R的代价
for (int i = 0; i < N; ++i) {
cost[i][0] = cost[i][1] = cost[i][2] = 0;
for (int j = 0; j < M; ++j) {
if (grid[i][j] != 'W') cost[i][0]++;
if (grid[i][j] != 'B') cost[i][1]++;
if (grid[i][j] != 'R') cost[i][2]++;
}
}
// 初始状态:从第0行开始,白色、蓝色行数为0,当前总代价0,当前颜色阶段为白色
dfs(0, 0, 0, 0, 0);
cout << min_changes << endl;
return 0;
}
2.前缀和:
#include <bits/stdc++.h> // 包含所有标准库头文件(竞赛常用写法)
using namespace std;
const int MAX_N = 50; // 定义最大行数
const int MAX_M = 50; // 定义最大列数
int main() {
int N, M; // 实际的行数和列数
cin >> N >> M; // 输入行数和列数
char grid[MAX_N][MAX_M]; // 定义静态二维数组存储旗帜当前颜色
// 读取输入数据
for (int i = 0; i < N; ++i) {
for (int j = 0; j < M; ++j) {
cin >> grid[i][j]; // 读取每个格子的颜色(W/B/R)
}
}
// 预处理:计算每行涂成W/B/R需要改变的格子数
int cost[MAX_N][3] = {0}; // cost[i][0]:第i行涂W的代价,[1]:B,[2]:R
for (int i = 0; i < N; ++i) {
for (int j = 0; j < M; ++j) {
// 如果当前不是W,涂W代价+1
if (grid[i][j] != 'W') cost[i][0]++;
// 如果当前不是B,涂B代价+1
if (grid[i][j] != 'B') cost[i][1]++;
// 如果当前不是R,涂R代价+1
if (grid[i][j] != 'R') cost[i][2]++;
}
}
// 计算前缀和数组,用于快速计算区间和
int prefix[MAX_N + 1][3] = {0}; // prefix[0][x] = 0
for (int i = 1; i <= N; ++i) {
// 前i行涂W的总代价
prefix[i][0] = prefix[i - 1][0] + cost[i - 1][0];
// 前i行涂B的总代价
prefix[i][1] = prefix[i - 1][1] + cost[i - 1][1];
// 前i行涂R的总代价
prefix[i][2] = prefix[i - 1][2] + cost[i - 1][2];
}
int min_changes = INT_MAX; // 初始化最小修改次数为最大值
// 枚举所有可能的分割方式
for (int i = 1; i <= N - 2; ++i) { // 白色区域行数(至少1行)
for (int j = 1; j <= N - i - 1; ++j) { // 蓝色区域行数(至少1行)
int k = N - i - j; // 红色区域行数(剩余行)
if (k < 1) continue; // 确保红色区域至少有1行
// 计算当前分割方式的总代价:
// 前i行涂W的代价 +
// 中间j行涂B的代价 +
// 剩余k行涂R的代价
int total = prefix[i][0] +
(prefix[i + j][1] - prefix[i][1]) +
(prefix[N][2] - prefix[i + j][2]);
// 更新最小代价
if (total < min_changes) {
min_changes = total;
}
}
}
// 输出结果
cout << min_changes << endl;
return 0;
}