KBQA
文章平均质量分 79
余俊晖
余俊晖,NLP炼丹师,目前专注自然语言处理领域研究。曾获得国内外自然语言处理算法竞赛TOP奖项近二十项。
展开
-
【LLM & RAG & text2sql】大模型在知识图谱问答上的核心算法详细思路及实践
本文介绍了一个融合RAG(Retrieval-Augmented Generation)思路的KBQA(Knowledge-Based Question Answering)系统的核心算法及实现步骤。KBQA系统的目标是通过自然语言处理技术,从知识图谱中提取和生成精确的答案。mention识别、实体链接及排序、属性选择及排序、文本拼接以及最终的Text2SQL生成。通过这些步骤,系统能够准确识别用户提出的问题中的关键实体和属性,并生成相应的查询语句,从而从知识图谱或数据库中检索所需的信息。原创 2024-08-19 18:28:49 · 1191 阅读 · 0 评论 -
【TKGQA】关于时间知识图谱问答的一篇综述阅读
时间知识图谱问答(TKGQA)是KBQA中一个关注时间问题的重要子任务。时间问题包含时间约束、需要时间标记的答案,反映了现实世界事件的动态和演变性质。通常表示为 G = (E, R, T, F),其中 E、R、T 和 F 分别代表实体(entities)、关系(relations)、时间戳(timestamps)和事实(facts)。一个时态事实 f ∈ F 由一个或多个实体、关系和相关的时间戳组成。原创 2024-06-22 15:24:46 · 878 阅读 · 0 评论 -
【LLM & KBQA】FlexKBQA:一种结合LLM的KBQA框架
直接生成答案:一些方法直接利用LLMs生成答案,而不是生成中间的程序(如SPARQL查询)。这种方法通常依赖于模型的上下文学习能力,通过提供少量的示例(in-context learning)来引导模型理解问题并生成答案。程序生成:在某些情况下,LLMs被用来直接生成执行查询的程序,例如SPARQL查询。这种方法需要模型理解问题的结构,并能够将自然语言问题转换为有效的查询语言。语义解析:LLMs也被用于将自然语言问题映射到结构化的查询表示,如SPARQL。原创 2024-02-03 11:35:58 · 1149 阅读 · 0 评论 -
KBQA的主要流程及部分Top竞赛方案总结
给定自然语言问题,通过对问题进行语义理解和解析,进而利用知识库进行查询、推理得出答案主要是面向开放领域的知识图谱的问答。通过分词、主题实体提及识别、实体连接关系识别、语义匹配、启发式答案选择的Pipeline方式构建问答系统,该系统最多能解决两跳(two-hop)的问题。原创 2022-09-28 21:46:21 · 2090 阅读 · 0 评论 -
基于深度学习的KBQA方法(Joint)pipline改进思考(二)
在span片段识别的ner模型时,模型的span是枚举query产生的,如:姚明的老婆是谁?此时,可以将所有的候选属性当作是训练RE网络的样本,训练仍然是。这样的优势就是只需训练一个BERT模型即可,也能减少推理速度。在知识库中查询答案时返回top1的属性对应的答案即可。在成功识别出“姚明”这个实体后,我们可以通过。因此,端到端的联合模型显得就很有必要了。:“1”或“0”,将所有候选输入经过“”损失函数即可拿到所有候选属性的。公众号:自然语言处理及深度学习。中召回所有与“姚明”相关的。原创 2022-09-28 21:40:16 · 434 阅读 · 0 评论 -
Path-Ranking:KBQA中path生成、召回、粗排与精排
通过实体链接获取到了问题中的实体,路径生成则是从实体出发,遍历KG,生成所有可能的答案路径,在过程中对路径进行剪枝。原创 2022-09-27 11:54:16 · 610 阅读 · 0 评论 -
浅尝KBQA中使用语义角色标注进行约束挂载
语义角色标注是一种浅层语义分析技术,以句子为单位,分析句子的谓词-论元结构,其理论基础来源于Fillmore(1968)年提出的格语法,不对句子所包含的语义信息进行深入分析。具体来说,语义角色标注的任务就是以句子的谓词为中心,研究句子中各成分与谓词之间的关系,并且用语义角色来描述他们之间的关系。例如如下所示:A0:施事者、主体、触发者A1:受事者PSR:持有者PSE:被持有者。原创 2022-09-19 15:04:27 · 301 阅读 · 0 评论 -
基于深度学习的KBQA方法(pipline)的一些思考(一)
介绍:链式:SPARQL 多个三元组呈递进关系,x->y->z,非交集关系。分类模型:BERT+Linear,使用分类模对query中的关系做预测。因此,针对不同的问题类型在逻辑上进行处理也是回答问句的方向。获得问句中的实体:姚明。问句的答案对应三元组里面的主语,spo=0。问句的答案对应三元组里面的谓语,spo=1。问句的答案对应三元组里面的宾语,spo=2。模型:BERT+Linear对query。作用:判断问句是单挑问题还是多跳问题。模型:BERT+Linear。模型:BERT+Linear。原创 2022-09-17 14:58:28 · 723 阅读 · 0 评论 -
使用句法依存分析实现KBQA中的约束挂载
本文内容主要讲解通过句法依存实现KBQA中约束挂载的流程原创 2022-09-14 22:23:51 · 425 阅读 · 0 评论