- 博客(380)
- 资源 (2)
- 收藏
- 关注
原创 Java 量化系列(三十):2 种方案获取股票是否可融
本文介绍了两种自动化标签爬取方案:东方财富页面动态爬取和同花顺问财文件导入。前者通过htmlunit模拟浏览器执行JS,jsoup解析页面元素,适合中小规模实时数据;后者通过批量导入文件处理大规模数据。文章重点讲解了东方财富方案的技术实现,包括依赖准备、工具类封装和核心爬取逻辑,提供了一套完整的自动化标签获取技术方案,可显著提升海量数据标注效率。
2026-01-25 12:00:00
657
原创 Java 量化系列(二十九):多维度指标筛选实战!效率提升 10 倍
本文介绍了一套自定义指标筛选系统,支持MACD、KDJ、BOLL等8大指标的灵活组合筛选。系统采用三层架构(条件输入层、逻辑校验层、结果输出层),通过定义筛选条件实体、核心批量校验逻辑和结果输出,实现高效批量处理时序数据。用户只需勾选目标指标,系统即可自动校验并输出符合条件的结果,具有灵活、高效、可复用的特点,适用于行业数据、监测数据等多种时序数据筛选场景。
2026-01-24 11:30:00
858
原创 Java 量化系列(二十八):多指标共振实战!10 大指标整合判断趋势拐点,提升时序数据介入准确率
本文提出了一种基于多指标共振的时序数据趋势拐点判断方法。针对单一指标容易误判的问题,通过整合KDJ、MACD、BOLL等10大技术指标,构建了包含数据准备层、指标判断层和综合决策层的三层架构体系。该方法采用"指标独立判断+综合计数"的逻辑,当≥2个指标同时发出信号时判定为趋势拐点,有效降低了误判率。文章详细阐述了核心逻辑、系统架构和关键代码实现,包括指标计算、信号判断和综合决策等核心环节。该方案适用于各类时序数据分析场景,通过多维度指标验证提高趋势判断的准确性,为技术分析提供可靠参考。
2026-01-23 12:00:00
1805
原创 Java 量化系列(二十七):前端指标可视化实战!1 分钟搭完 MACD BOLL WR 图表,对接接口直接用
本文介绍如何实现专业级的量化指标前端可视化,重点解决开发者在前端展示环节遇到的接口对接、图表交互等问题。通过Bootstrap+jQuery技术栈,详细演示MACD、BOLL、WR三大指标的完整实现流程,包括数据接口调用、图表渲染和交互优化。文章提供现成的API接口(支持股票代码和日期查询)和可视化页面示例,帮助开发者在10分钟内完成专业可视化页面的搭建。文末预告下期将讲解基于这些指标的买卖点判断方法。
2026-01-22 12:00:00
148
原创 Java量化系列(二十六):批量实现MACDKDJBOLLDMI等指标计算!完整代码+组件解析,新手直接复用
摘要:本文介绍了一套基于Java的多指标批量计算方案,适用于数据可视化与趋势分析场景。该方案封装了20+常用指标(如MACD、KDJ、RSI等),支持一键计算和配置化控制,具有标准化、可扩展、低耦合等优势。核心组件包括指标计算辅助类、枚举定义、数据载体和配置类,通过依赖量化数据指标库实现高效计算。文章详细解析了从配置到计算的完整链路,提供开箱即用的技术实现,可快速集成到各类数据分析项目中,显著提升开发效率。
2026-01-21 20:00:00
818
原创 Java量化系列(二十五):WR指标实战全攻略!wr6101420买卖信号直给,精准抓底逃顶不踩坑
**摘要:WR威廉指标通过衡量股价在近期高低价区间的位置,帮助判断超买超卖状态。关键点:1)WR<20为超买区(卖出信号),WR>80为超卖区(买入信号);2)常用周期包括wr6(超短线)、wr10(短线)、wr14(中线)和wr20(长线),各有不同阈值和适用场景;3)买卖信号需结合成交量、均线等指标确认。该指标简单易用,适合量化交易者精准把握买卖时机。
2026-01-21 14:30:00
818
原创 Java量化系列(二十四):BIAS指标实战全攻略!bias61224买卖信号直给,新手轻松抓超买超卖拐点
BIAS(乖离率)是量化交易中的重要指标,通过衡量股价与均线的偏离程度来判断超买超卖状态。本文系统讲解了BIAS的核心逻辑、计算方法和实战应用: BIAS通过计算股价与均线的百分比偏离度,量化"物极必反"的市场规律,形成明确的买卖信号判断标准。 重点分析了bias6(短期)、bias12(中期)、bias24(长期)三大周期的适用场景和阈值差异,并给出具体的买入卖出数据标准。 提出"背离确认+量价配合"的信号强化方法,结合均线、CCI14等指标形成三重判断体系,提高交
2026-01-20 14:54:53
861
原创 Java量化系列(二十三):均线实战全攻略!MA/EMA各周期用法+买卖信号直给,新手也能轻松抓趋势
本文系统解析了MA与EMA均线的核心差异及应用策略。MA稳定性强,适合判断长期趋势;EMA灵敏度高,适合捕捉短期拐点。详细拆解了5日、10日、20日、30日、60日均线的适用场景,并提供3类金叉/死叉组合的买卖信号标准(如EMA5金叉EMA10为短线买入信号)。结合CCI14、TD九转等指标形成三重确认体系,给出4个实战场景应用指南。强调均线使用需注意震荡行情假信号、收盘确认等关键要点,并建议新手从单一组合开始练习。文末提供均线实战手册获取方式,帮助投资者精准把握趋势机会。
2026-01-16 12:00:00
1806
原创 Java量化系列(二十二):CCI14指标实战!精准捕捉趋势拐点,买入卖出数据直给,新手也能轻松上手
本文详细介绍了CCI14指标在量化交易中的应用。作为兼顾趋势跟踪与拐点捕捉的利器,CCI14通过计算股价与平均价格的偏离程度判断趋势强度。文章首先解析CCI14的核心逻辑,指出其三个关键区间:>+100(强势上涨)、-100至+100(正常波动)、<-100(强势下跌)。随后给出明确的买入/卖出信号判断标准,包括超买超卖反转、趋势启动和背离信号三类场景,并附具体数据示例。实战部分展示4个核心用法,如短线抄底、中线追涨等,强调需结合RSI、BOLL等指标提高准确率。最后总结CCI14兼顾趋势与拐点
2026-01-12 12:26:51
795
1
原创 Java量化系列(二十一):TD九转序列实战!精准捕捉顶底反转,买入卖出数据一目了然,新手也能抄作业
本文详细介绍了TD九转序列指标在量化交易中的应用。该指标通过连续9根K线的涨跌计数来预测趋势反转,分为低9(买入)和高9(卖出)信号。文章从核心逻辑、判断标准、实战场景和避坑指南四个方面展开: 核心规则:下跌趋势中收盘价低于前4根K线完成低9计数,上涨趋势中收盘价高于前4根K线完成高9计数。 买卖信号标准:需同时满足计数条件和价格确认条件(突破或跌破第9根K线极值),建议结合RSI、BOLL等指标增强准确性。 四大实战场景:包括短线抄底、中线逃顶、趋势反转确认和假信号过滤,均给出具体操作建议和数据示例。 使
2026-01-08 18:28:04
1019
原创 Java量化系列(二十):RSI指标实战!61224周期精准区分超买超卖,三行代码集成,捕捉短线波段机会
本文介绍了RSI指标在量化交易中的应用,重点解析了6/12/24三种周期的核心逻辑与适用场景。RSI通过量化多空力量平衡,能精准识别超买超卖区域:RSI6适合短线波段(阈值20/80),RSI12用于中线趋势(阈值30/70),RSI24判断长线方向(阈值50)。文章详细说明了各周期的买卖信号标准,并强调多周期共振可提高准确性。实现上可复用现有DMI/BOLL架构,只需3步即可完成集成,与现有指标体系无缝融合。
2026-01-08 18:26:20
1389
原创 Java量化系列(十九):DMI指标实战!精准识别趋势强弱,五行代码集成,告别盲目追涨杀跌
摘要:本文介绍如何利用DMI指标精准识别市场趋势强弱,通过Java代码快速集成该技术指标。DMI由DIP(上升动向)、DIM(下降动向)、ADX(平均动向)和ADXR(平均动向评级)四部分组成,能有效区分真假趋势。文章详细解析了DMI的四大核心买卖信号标准,并展示了如何复用BOLL指标架构快速实现DMI集成,仅需2步代码修改即可完成多指标体系的融合。该实现可与现有KDJ、MACD等技术指标无缝结合,构建多维度的量化交易决策系统。
2026-01-07 21:00:00
1076
1
原创 Java量化系列(十八):BOLL指标实战!精准捕捉趋势拐点,代码复用率100%,新手也能轻松上手
本文介绍了Java量化交易中BOLL指标(布林带)的实战应用。BOLL通过上轨、中轨、下轨三条轨道线反映股价运行状态,帮助判断趋势强弱和潜在拐点。文章详细讲解了BOLL的4个核心买卖信号标准,包括下轨支撑反弹、中轨突破等触发条件。在代码实现上,BOLL可复用KDJ指标90%的架构,仅需两步关键修改:1)在指标调用环节添加BOLL计算;2)补充BOLL专属的数据提取逻辑,整合收盘价与三条轨道数据。通过复用现有框架,开发者可快速实现BOLL指标,并与KDJ、MACD等指标无缝融合,构建多维度分析体系。
2026-01-06 21:00:00
271
原创 Java量化系列(十七):KDJ指标实战指南!1行代码生成图表,买卖阈值精准定位,新手也能抄作业
本文是Java量化系列第十七篇,重点讲解KDJ指标实战应用。KDJ指标通过K、D、J三线反映股价短期超买超卖状态,核心判断标准包括:80/20阈值区间、金叉死叉信号和J线预警值。文章提供了完整的Java实现方案,包含4步闭环流程:数据查询→指标计算→格式封装→ECharts可视化。代码部分展示了如何整合KDJ与MACD等多指标数据,并通过通用方法封装成ECharts兼容格式,最终生成包含买卖信号的KDJ专业图表。全文强调实战性,提供可直接复用的代码片段,帮助读者快速构建量化分析体系。
2026-01-05 21:00:00
1773
1
原创 Java量化系列(十六):三行代码生成MACD指标!用专业量化库计算+ECharts可视化,买卖信号一眼看穿
本文介绍了如何使用Java量化库quant-data-indicator一键计算MACD指标并进行可视化展示。文章首先解析了MACD的核心逻辑,包括DIF、DEA和MACD柱状线的含义及买卖信号判断方法。随后详细拆解了从数据查询到可视化的4步闭环流程:查询股票历史数据、调用量化库计算MACD、封装可视化数据以及ECharts图表渲染。核心代码部分展示了如何引入依赖、查询历史数据,以及通过getLineVoByHistory方法计算并封装MACD数据为ECharts可用的格式。该方法支持扩展其他技术指标,为量
2026-01-04 21:00:00
1011
1
原创 Java 量化系列(十五):输入股票代码,1 秒生成专业 K 线图!ECharts 渲染 + 精准数据,新手也能看懂走势
本文介绍了如何用Java实现股票K线图一键生成功能,输入股票代码即可自动生成专业K线图。系统通过三个核心步骤完成:首先精准查询股票60天历史交易数据,然后将数据按ECharts标准格式封装,最后在前端渲染出包含开盘价、收盘价等关键信息的K线图。该功能具有数据精准、维度灵活和易于集成的优势,支持自定义展示干支等扩展维度。文中提供了完整的Java代码实现,包括数据查询、格式转换等核心逻辑,并建议参考ECharts官方示例完成前端渲染。通过这个方案,用户可以快速将专业K线图功能集成到自己的量化分析系统中。
2026-01-04 10:24:41
871
1
原创 Java量化系列(十三):42种K线形态“涨跌密码”全揭秘!新手也能精准预判行情
摘要:本文系统解析42种K线形态,将其分为看涨、看跌和中性三类,帮助投资者识别市场趋势信号。看涨形态如锤子线、早晨之星等预示底部反转,看跌形态如乌云盖顶、黄昏之星则警示顶部风险。文章强调K线形态需结合趋势、位置和成交量综合判断,并给出实战原则:多形态共振更可靠,位置比形态重要,成交量是关键验证。最后提醒投资者避免单独使用K线信号,需配合其他技术指标提高准确性。新手可重点掌握8种高准确率形态,逐步提升交易决策能力。(149字)
2026-01-03 20:15:00
1798
1
原创 Java 量化系列(十四):输入股票代码,1 秒识别 K 线形态!自动判断涨跌,新手也能精准决策
这篇文章介绍了一个股票K线形态一键查询功能,可以自动识别42种主流K线形态并给出操作建议。主要特点包括: 1秒内完成股票K线形态分析,支持实时数据更新 按优先级识别多K线、三K线、双K线和单K线形态 提供涨跌概率、趋势分析和操作建议 适用于选股、持仓监控和复盘学习场景 核心实现逻辑包括: 校验股票合法性 拉取30天K线数据 分层识别42种K线形态 组装可视化结果和建议 该功能将复杂的K线分析自动化,帮助投资者快速决策。
2026-01-03 20:00:00
1416
原创 Java量化系列(十二):收盘自动存K线图!日K/分钟K一键抓取,复盘再也不用翻软件
摘要:本文介绍了一个自动抓取股票K线图的神器工具,可解决手动复盘效率低、无法批量保存K线图等问题。该工具通过调用新浪财经公开接口,在收盘后自动抓取指定股票的日K线和分钟K线图,并将图片保存至本地和数据库。核心功能包括:自动创建文件夹、过滤非交易股票、避免重复抓取、Base64转存图片等。文中详细拆解了核心代码逻辑,包括入口方法、数据抓取与保存流程、接口调用方式等,帮助开发者快速实现自动化K线图抓取功能。
2026-01-03 09:26:02
871
1
原创 Java量化系列(十一):抓取同花顺核心行情!10分钟1次精准缓存,掌握市场情绪密码
炒股经验表明:指数决定方向,情绪决定强度。单纯看指数涨跌容易误判,关键要结合市场情绪指标(如涨跌停数量、涨跌分布等)。本文实现了一套精准抓取某券商核心行情数据的量化系统,通过定时调度(每10分钟1次)、模拟请求头绕过反爬、解析JSON数据并缓存至Redis,实时获取大盘评分、涨跌停分布等关键指标。系统采用Spring Scheduler定时任务、HttpClient抓取、FastJSON解析,数据存入Redis后实现毫秒级查询,帮助投资者避开“指数陷阱”,精准把握交易节奏。 (字数:149字)
2026-01-03 09:16:02
922
原创 Java量化系列(十):10s一次实时抓取!打造专属大盘指数监控神器,精准把握市场脉搏
这里的“势”,核心就是大盘指数的动态——上证指数定方向,深证成指看成长,创业板指察情绪,沪深300判权重。但市面上的行情软件要么广告多,要么数据延迟,想实时掌握核心指数动态总差口气。本文作为Java量化系列的第十篇,将带大家打造:核心是工作日交易时段(9:00-11:00、13:00-14:00)每10秒触发一次抓取(Cron表达式精准控制),同步东方财富/财联社双数据源的指数数据,实时缓存到Redis,让你毫秒级获取最新价、涨跌幅等关键信息,为交易决策筑牢数据基础!
2026-01-03 09:12:04
775
1
原创 Java量化系列(九):实现股票列表自动同步,精准监控新增、更名与退市动态
本文是Java量化系列第九篇,聚焦股票列表自动同步与变更监控功能的实现。核心功能包括:工作日9:26自动对比网络最新股票列表与数据库存量数据,精准识别新股上市、股票更名和退市三类动态,同步更新数据库并记录变更日志。文章详细拆解了定时调度配置、数据对比逻辑和批量同步实现方案,通过Spring Scheduler定时任务、Stream API数据对比等技术手段,确保量化系统数据基础的准确性和时效性。该功能解决了遗漏新股、跟踪更名和识别退市等痛点,为股票数据爬取、统计分析等后续环节提供了可靠保障。
2026-01-03 09:05:18
1001
原创 Java量化系列(八):实现自选股最近10天行情涨跌邮件推送
本文介绍了Java量化系统中自选股涨跌信息自动推送功能的实现方案。该功能通过定时调度在工作日18:30自动抓取用户自选股最近10天的涨幅数据,使用Velocity模板渲染成HTML报表并发送至邮箱。核心流程包括:1)配置Cron表达式实现精准定时;2)查询自选股列表并获取涨跌数据;3)格式化数据适配邮件展示;4)渲染HTML模板并发送邮件。系统采用Spring Scheduler、Velocity等技术,实现了"解放双手,信息触达"的核心价值,帮助投资者便捷跟踪持仓趋势。
2026-01-03 09:03:34
1634
原创 Java量化系列(七):搭建股票统计分析系统,轻松搞定周级涨跌与折线图可视化
本文介绍了Java量化交易系统中股票统计分析模块的实现,重点解决了两个核心需求:周级别涨跌统计和折线图数据可视化。系统采用SpringBoot框架,通过精准的时间处理、高精度数值计算和灵活的数据转换,实现了中短期趋势分析和多维度数据可视化功能。文章详细阐述了接口设计、业务逻辑、异常处理等关键技术点,并提出了生产环境优化建议,包括缓存、限流和日志增强等。该模块将原始数据转化为可分析的统计指标,为量化决策提供了有效支持。
2025-12-30 15:29:12
817
原创 Java量化系列(六):摸鱼神器!构建专属股票实时价格系统
本文介绍了一个专为量化交易者设计的"摸鱼"股票实时价格系统。该系统通过Spring定时任务在交易时段自动抓取自选股票价格,将数据缓存至Redis,用户只需查看Redis即可掌握行情,避免频繁打开行情软件暴露行踪。系统核心包括:1) 基于Cron表达式的精准定时调度;2) 分批异步抓取机制避免触发反爬;3) Redis缓存存储优化,包含数据完整性处理和轻量化设计。文章详细讲解了各模块实现逻辑,并提供了生产环境优化建议,如线程池配置、失败重试等。该系统实现了"定时抓取-缓存更新-隐
2025-12-30 15:20:07
1226
原创 Java量化系列(五):实现股票详细信息实时获取
但对量化交易者而言,仅维护自选列表远远不够——还需实时掌握单只股票的关键信息,比如当前价格、涨跌幅度、成交量、市盈率等,这些数据是判断标的短期走势、执行策略信号的核心依据。
2025-12-29 12:20:20
1906
原创 Java量化系列(四):实现自选股票维护功能
有了完备的股票数据后,接下来需要面向用户层面构建核心交互功能:自选股票维护。毕竟对于量化交易者而言,关注的股票往往是少数几只,自选功能能帮助用户快速聚焦核心标的,便捷查看其数据与策略表现。
2025-12-29 11:48:29
972
原创 Java量化系列(三):实现东方财富历史日K线数据同步
对于量化策略回测而言,仅有当日和近期的日K数据远远不够——我们需要获取一只股票过去数月、数年的历史K线数据,才能验证策略在不同市场环境下的有效性。
2025-12-29 11:42:30
735
原创 Java量化系列(二):基于SpringBoot实现股票日K数据每日自动同步
炒股久了就会发现:指数定方向,情绪定强度。上证指数涨了不代表能赚钱,要是涨停股寥寥无几、下跌股扎堆,大概率是“指数虚涨”;反之,哪怕指数微涨,但涨停股多、赚钱效应足,行情就有参与价值。而能最直观反映…
2025-12-28 18:44:25
1118
2
原创 Java量化系列(一):实现股票列表全量更新核心功能
本文介绍了Java股票量化工程师构建量化交易系统的基础数据层实现方案。文章基于SpringBoot+Mybatis-Plus+Mysql技术栈,详细讲解了股票列表数据的全量爬取、解析与持久化流程。重点包括:1)数据库表结构设计,涵盖股票代码、交易所标识等关键字段;2)分页爬取东方财富API的实现及防爬处理;3)JSON数据解析为实体类的核心逻辑;4)批量插入数据库的优化方法。文章还提出了异步处理、异常重试等后续优化方向,为量化系统开发提供了实用参考。
2025-12-28 18:17:51
680
原创 FastJson在Java后端方面解析使用(二)
JSON协议使用方便,越来越流行,JSON的处理器有很多,这里我介绍一下FastJson,FastJson是阿里的开源框架,被不少企业使用,是一个极其优秀的Json框架。FastJson的特点:1.FastJson数度快,无论序列化和反序列化,都是当之无愧的fast2.功能强大(支持普通JDK类包括任意Java Bean Class、Collection、Map、Date或enum)3.零依赖(没有依赖其它任何类库)首先要下载fastjson的jar包。
2023-08-21 20:03:47
1034
原创 JSON简介及前端简单解析(一)
JSON,全称是JavaScript Object Natotion(JavaScript 对象表示法),是存储和交换文本信息的语法。与XML类似。但JSON 比 XML 更小、更快,更易解析。是轻量级的,且具有自我描述性,更好地理解。JSON 独立于语言:JSON 使用 Javascript语法来描述数据对象,但是 JSON 仍然独立于语言和平台。JSON 解析器和 JSON 库支持许多不同的编程语言。目前非常多的动态(PHP,JSP,.NET)编程语言都支持JSON。
2023-08-21 20:00:56
2866
S2SH框架整合开发代码.zip
2019-05-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅