Codeforces Round #777 (Div. 2) D题 Madoka and the Best School in Russia (背包做法)

题意:

给定 x x x t t t ( 2 ≤ x , d ≤ 1 e 9 2 \leq x,d \leq 1e9 2x,d1e9) ,要求把 x x x 分解成 a 1 ∗ a 2 ∗ a 3 … … ∗ a k a_1*a_2*a_3 …… * a_k a1a2a3ak 的形式 ,其中 , x x x a i a_i ai t t t 的倍数 , 且 a i a_i ai 不是 t 2 t^2 t2 的倍数 , 若有至少两种表示方案 , 输出 y e s yes yes , 否则输出 n o no no

思路:

这题可以分类讨论写,这里介绍dp做法。首先不看对题目对 a i a_i ai 的限制 , 我们至少需要把 x x x 的 因子先分解出来(最多大概1000多个因子),然后每个因子又可以取无限次, 所以可以得出是个完全背包的模型。

设当前因子为 d d d 可以初步得到状态转移方程(优化掉一维后):

 dp[i] = dp[i] + dp[i / d];

有了初步的思路后,再联系一下题目给的限制。
假设 x = a 1 ∗ a 2 ∗ a 3 ∗ a 4 x = a_1 * a_2 * a_3 * a_4 x=a1a2a3a4 , 我们先固定一个整除 t t t但不整除 t 2 t^2 t2的因子,比如 a 1 a_1 a1 , 那么当前情况对最后方案数的贡献就是 d p [ v a l ] dp[val] dp[val] , 其中 v a l = a 2 ∗ a 3 ∗ a 4 val = a_2 * a_3 * a_4 val=a2a3a4 ,所以也是 x x x的其中一个因子。

所以在dp中,我们只需要从小到大枚举每一个不是 d 2 d^2 d2 倍数的因子,再找另一个因子(可能是自己),使二者乘积依然是 x x x 的因子, 然后就可以进行状态转移了!

这题还有一个问题,数据范围太大 , codeforces中的题解是用 m a p map map来做dp的,但这样查询需要 l o g log log 的时间 , 所以可以用一种偏离散化的方式来存值,大于 1 e 5 1e5 1e5 和 小于 1 e 5 1e5 1e5 的因子分别存在两个数组里 , 通过下标来进行操作。

代码

#include<bits/stdc++.h>
#define endl '\n'

typedef long long LL;

using namespace std;

int c[2000] , id[100010] , fid[100010] , dp[2000] , tot;
// c数组存x的因子 , id存小于1e5 因子的下标 , fid存大于1e5因子的下标
// dp[i] 表示 乘积为i对应值时的方案数

void init(){
    for(int i = 1 ; i <= tot ; i ++)
    dp[i] = 0;
    tot = 0;
}

void solve(){
    int x , d;
    cin >> x >> d;

    for(int i = 1 ; i * i <= x ; i ++)
        if(x % i == 0)
            if(i * i == x) c[++ tot] = i;
            else c[++ tot] = i , c[++ tot] = x / i;

    sort(c + 1 , c + 1 + tot);

    for(int i = 1 ; i <= tot ; i ++)
        if(c[i] > 100000) fid[x / c[i]] = i;
        else id[c[i]] = i;

    dp[1] = 1; //初始化dp数组

    for(int i = 1 ; i <= tot ; i ++)
        if(c[i] % d == 0 && (c[i] / d) % d != 0){
            for(int j = 1 ; j <= tot ; j ++)
                if((x / c[i]) % c[j] == 0 ){
                    int p = c[i] * c[j];
                    int q = (p > 100000) ? fid[x / p] : id[p];
                    dp[q] = dp[q] + dp[j];
                    //dp[q] = min(dp[q] + dp[j] , 2) 同理
                }
        }

    if(dp[tot] >= 2) cout << "YES" << endl;
    else cout << "NO" << endl;

    init();
}

int main(){
    std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);

    int t;
    cin >> t;

    while(t --) solve();

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PanC_ake

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值