题意:
给定 x x x 和 t t t ( 2 ≤ x , d ≤ 1 e 9 2 \leq x,d \leq 1e9 2≤x,d≤1e9) ,要求把 x x x 分解成 a 1 ∗ a 2 ∗ a 3 … … ∗ a k a_1*a_2*a_3 …… * a_k a1∗a2∗a3……∗ak 的形式 ,其中 , x x x 和 a i a_i ai 是 t t t 的倍数 , 且 a i a_i ai 不是 t 2 t^2 t2 的倍数 , 若有至少两种表示方案 , 输出 y e s yes yes , 否则输出 n o no no。
思路:
这题可以分类讨论写,这里介绍dp做法。首先不看对题目对 a i a_i ai 的限制 , 我们至少需要把 x x x 的 因子先分解出来(最多大概1000多个因子),然后每个因子又可以取无限次, 所以可以得出是个完全背包的模型。
设当前因子为 d d d 可以初步得到状态转移方程(优化掉一维后):
dp[i] = dp[i] + dp[i / d];
有了初步的思路后,再联系一下题目给的限制。
假设
x
=
a
1
∗
a
2
∗
a
3
∗
a
4
x = a_1 * a_2 * a_3 * a_4
x=a1∗a2∗a3∗a4 , 我们先固定一个整除
t
t
t但不整除
t
2
t^2
t2的因子,比如
a
1
a_1
a1 , 那么当前情况对最后方案数的贡献就是
d
p
[
v
a
l
]
dp[val]
dp[val] , 其中
v
a
l
=
a
2
∗
a
3
∗
a
4
val = a_2 * a_3 * a_4
val=a2∗a3∗a4 ,所以也是
x
x
x的其中一个因子。
所以在dp中,我们只需要从小到大枚举每一个不是 d 2 d^2 d2 倍数的因子,再找另一个因子(可能是自己),使二者乘积依然是 x x x 的因子, 然后就可以进行状态转移了!
这题还有一个问题,数据范围太大 , codeforces中的题解是用 m a p map map来做dp的,但这样查询需要 l o g log log 的时间 , 所以可以用一种偏离散化的方式来存值,大于 1 e 5 1e5 1e5 和 小于 1 e 5 1e5 1e5 的因子分别存在两个数组里 , 通过下标来进行操作。
代码
#include<bits/stdc++.h>
#define endl '\n'
typedef long long LL;
using namespace std;
int c[2000] , id[100010] , fid[100010] , dp[2000] , tot;
// c数组存x的因子 , id存小于1e5 因子的下标 , fid存大于1e5因子的下标
// dp[i] 表示 乘积为i对应值时的方案数
void init(){
for(int i = 1 ; i <= tot ; i ++)
dp[i] = 0;
tot = 0;
}
void solve(){
int x , d;
cin >> x >> d;
for(int i = 1 ; i * i <= x ; i ++)
if(x % i == 0)
if(i * i == x) c[++ tot] = i;
else c[++ tot] = i , c[++ tot] = x / i;
sort(c + 1 , c + 1 + tot);
for(int i = 1 ; i <= tot ; i ++)
if(c[i] > 100000) fid[x / c[i]] = i;
else id[c[i]] = i;
dp[1] = 1; //初始化dp数组
for(int i = 1 ; i <= tot ; i ++)
if(c[i] % d == 0 && (c[i] / d) % d != 0){
for(int j = 1 ; j <= tot ; j ++)
if((x / c[i]) % c[j] == 0 ){
int p = c[i] * c[j];
int q = (p > 100000) ? fid[x / p] : id[p];
dp[q] = dp[q] + dp[j];
//dp[q] = min(dp[q] + dp[j] , 2) 同理
}
}
if(dp[tot] >= 2) cout << "YES" << endl;
else cout << "NO" << endl;
init();
}
int main(){
std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
int t;
cin >> t;
while(t --) solve();
return 0;
}