学习总结4

特征编码

在处理数值特征时,我们发现它们并不适合直接用于表示类别,因此通常使用独热编码(One-Hot Encoding)。这种编码方法将每个类别变量映射到一个高维空间中的一个点,在这个点上,对应于该取值的维度值为1,而其他维度的值为0。以颜色为例,如果有三个类别:红色、绿色和黄色,则独热编码会将它们表示为三个向量:(001)、(010)和(100)。这种编码方式的优点包括适用于大多数机器学习和深度学习算法,避免了特征之间的大小关系干扰模型训练,并能很好地处理分类变量。然而,独热编码也有其缺点,例如在类别数量较多时可能导致稀疏矩阵问题,并且在某些应用中可能不是最优选择。

对于文本数据,预处理步骤更为复杂:

  1. 加载文本:将文本作为字符串加载到内存中。
  2. 分词:将字符串切分为词元(如单词和字符)。
  3. 建立字典:将拆分的词元映射到数字索引。
  4. 转换为索引序列:将文本转换为数字索引序列,便于模型操作。
循环神经网络(RNN)

本周,我们深入研究了循环神经网络(RNN)及其变体。RNN能够处理序列数据,但在长序列数据中,RNN容易遇到“遗忘”问题。为了改进RNN的性能,提出了门控循环单元(GRU)和长短期记忆网络(LSTM)。

门控循环单元(GRU)

GRU通过引入更新门和重置门,使模型能够选择性地保留和忘记信息,改进了RNN在长序列数据处理中的表现。GRU的公式如下:

  • 更新门:𝑧𝑡=𝜎(𝑊𝑧⋅[ℎ𝑡−1,𝑥𝑡])zt​=σ(Wz​⋅[ht−1​,xt​])
  • 重置门:𝑟𝑡=𝜎(𝑊𝑟⋅[ℎ𝑡−1,𝑥𝑡])rt​=σ(Wr​⋅[ht−1​,xt​])
  • 新状态:ℎ~𝑡=tanh⁡(𝑊⋅[𝑟𝑡∗ℎ𝑡−1,𝑥𝑡])h~t​=tanh(W⋅[rt​∗ht−1​,xt​])
  • 最终状态:ℎ𝑡=(1−𝑧𝑡)∗ℎ𝑡−1+𝑧𝑡∗ℎ~𝑡ht​=(1−zt​)∗ht−1​+zt​∗h~t​

通过这些门控机制,GRU能够更好地捕捉和利用长序列数据中的信息,训练表现也优于传统RNN。

长短期记忆网络(LSTM)

LSTM通过引入输入门、遗忘门和输出门,有效地解决了RNN中的梯度消失和长时间依赖问题。LSTM的公式如下:

  • 遗忘门:𝑓𝑡=𝜎(𝑊𝑓⋅[ℎ𝑡−1,𝑥𝑡])ft​=σ(Wf​⋅[ht−1​,xt​])
  • 输入门:𝑖𝑡=𝜎(𝑊𝑖⋅[ℎ𝑡−1,𝑥𝑡])it​=σ(Wi​⋅[ht−1​,xt​])
  • 输出门:𝑜𝑡=𝜎(𝑊𝑜⋅[ℎ𝑡−1,𝑥𝑡])ot​=σ(Wo​⋅[ht−1​,xt​])
  • 新记忆内容:𝐶~𝑡=tanh⁡(𝑊𝐶⋅[ℎ𝑡−1,𝑥𝑡])C~t​=tanh(WC​⋅[ht−1​,xt​])
  • 记忆更新:𝐶𝑡=𝑓𝑡∗𝐶𝑡−1+𝑖𝑡∗𝐶~𝑡Ct​=ft​∗Ct−1​+it​∗C~t​
  • 最终状态:ℎ𝑡=𝑜𝑡∗tanh⁡(𝐶𝑡)ht​=ot​∗tanh(Ct​)

LSTM的设计使其在处理长序列数据时表现更为出色,是解决时间序列预测、自然语言处理等问题的强大工具。

生成对抗网络(GAN)

生成对抗网络(GAN)由生成器和判别器两个对抗网络组成:

  • 生成器(Generator):接受随机噪声输入,通过学习生成类似于真实样本的数据。
  • 判别器(Discriminator):对输入的数据进行分类,判断其是来自真实数据集还是生成器生成的数据。

GAN的训练过程是生成器和判别器交替优化,最终达到一种平衡状态(纳什平衡)。GAN在图像生成、数据增强等领域表现出色,但其训练过程不稳定,容易出现模式崩溃问题。

生成对抗网络(GAN)是由Ian Goodfellow等人在2014年提出的一种深度学习模型。它主要由两个互相对抗的神经网络组成:生成器(Generator)和判别器(Discriminator)。这两个网络通过竞争的方式共同进化,最终生成器能够生成以假乱真的数据。GAN在图像生成、数据增强、图像修复等领域有着广泛的应用。

基本原理
  1. 生成器(Generator)

    • 生成器是一个神经网络,它接受一个随机噪声向量(通常服从某一分布,如均匀分布或高斯分布),然后生成一个与真实数据相似的样本。
    • 生成器的目标是生成的数据能够欺骗判别器,使其认为这些数据是真实的。
  2. 判别器(Discriminator)

    • 判别器是一个二分类神经网络,它接受输入数据(可以是真实数据或生成器生成的数据),并输出一个概率,表示该输入数据是来自真实数据的概率。
    • 判别器的目标是准确地区分真实数据和生成数据。
  3. 训练过程

    • GAN的训练过程是生成器和判别器交替优化的过程。具体来说,判别器首先固定生成器的参数,对真实数据和生成数据进行分类,然后更新其参数以最大化对真实数据的识别能力和最小化对生成数据的误识别。
    • 生成器则固定判别器的参数,生成新的数据,并更新其参数以最大化生成数据被判别器认为是真实数据的概率。

这种对抗训练过程的目标是达到一种纳什均衡,即判别器无法区分真实数据和生成数据的状态。

重要概念和术语
  1. 随机噪声向量(Latent Vector)

    • 生成器的输入是一个随机噪声向量,通常从均匀分布或高斯分布中采样。这些噪声向量经过生成器的处理后被转换为生成数据。
  2. 交叉熵损失(Cross-Entropy Loss)

    • 判别器的损失函数通常是交叉熵损失,用于衡量其对真实数据和生成数据分类的准确性。
  3. 对抗损失(Adversarial Loss)

    • 生成器的损失函数基于判别器的输出,目的是最大化生成数据被判别器认为是真实数据的概率。这种损失也称为对抗损失。
  4. 模式崩溃(Mode Collapse)

    • 在训练过程中,生成器可能会陷入只生成一小部分样本的情况,即模式崩溃。这时生成器无法学习到数据的多样性,只能生成有限的几种样本。
  5. Wasserstein距离

    • 为了解决GAN中的训练不稳定性和模式崩溃问题,Wasserstein GAN(WGAN)提出使用Wasserstein距离(又称地球搬运距离)作为损失函数,以改善训练过程的稳定性和生成样本的多样性。
  6. 条件GAN(Conditional GAN, cGAN)

    • 条件GAN是在生成器和判别器中加入条件信息(如标签),使得生成器能够生成特定类别的样本。cGAN扩展了GAN的应用范围,可以生成有条件控制的样本。
  7. 生成模型(Generative Model)和判别模型(Discriminative Model)

    • 生成模型试图直接建模数据的生成过程,如生成器。
    • 判别模型则试图对输入数据进行分类,如判别器。
GAN的应用

Transformer

Transformer模型因其在序列到序列任务中的卓越表现而广受欢迎。其主要组件包括:

Transformer在NLP任务中的成功推动了大型预训练语言模型的发展,如BERT、GPT等。

  1. 图像生成

    • GAN可以生成高质量的图像,如人脸生成、场景生成等。在这种应用中,生成器学习生成与训练数据分布相似的图像。
  2. 数据增强

    • 在数据不足的情况下,GAN可以生成额外的训练数据,从而增强模型的泛化能力。
  3. 图像修复

    • GAN可以用于图像修复任务,如图像去噪、图像超分辨率等,生成器学习从有损图像中恢复高质量图像。
  4. 图像到图像翻译

    • GAN可以实现图像之间的转换,如从黑白图像生成彩色图像,从草图生成真实图像等。Pix2Pix和CycleGAN是此类应用的经典模型。
  5. 文本生成

    • 尽管GAN在文本生成方面的应用较少,但通过适当的调整和变种,GAN也可以用于生成自然语言文本。
  6. NeRF(神经辐射场)

    NeRF通过2D图像进行3D场景建模,显著提高了3D场景表示的效率和质量。其主要特点包括:

  7. 隐式表示:通过神经网络隐式表示3D场景,避免了显式3D模型构建的复杂性。
  8. 高效渲染:仅需少量的2D视角图像即可生成高质量的3D视图,适用于新视点合成和三维重建。
  9. 应用场景:广泛应用于虚拟现实(VR)、增强现实(AR)等领域。
  10. 多头自注意力机制:允许模型在不同的子空间中并行计算注意力,捕捉输入序列中不同位置之间的关系。
  11. 位置编码:为输入序列中每个位置添加唯一的编码,以保留序列的顺序信息。
  12. 残差连接和层规范化:加速训练并稳定深层网络的梯度。

大语言模型(LLM)

大语言模型(Large Language Model, LLM)是基于深度学习技术,尤其是基于变换器(Transformer)架构的大规模神经网络模型,用于处理和生成自然语言文本。LLM在自然语言处理(NLP)领域取得了显著的进展,广泛应用于文本生成、机器翻译、问答系统等任务。

基本原理

大语言模型通过在大规模文本语料库上进行训练,学习到词语、短语、句子及段落之间的复杂模式和关系。训练过程通常包括以下几个阶段:

预训练(Pre-training)

  • 在大规模未标注的文本数据上进行无监督学习,模型学习预测下一个词或填补掩盖的词,这种任务被称为语言模型任务或遮掩语言模型任务(Masked Language Model, MLM)。
  • 预训练阶段的目标是让模型学习广泛的语言表示,捕捉语言的统计规律和语义信息。

微调(Fine-tuning)

  • 在特定任务的标注数据集上进行有监督学习,以适应特定的应用场景。微调过程通常会在预训练模型的基础上进一步优化模型参数。
  • 例如,微调可以用于情感分析、命名实体识别(NER)、文本分类等具体任务。
重要概念和术语

应用领域

  1. Transformer架构

    • Transformer是一种基于注意力机制(Attention Mechanism)的神经网络架构,最早由Vaswani等人在2017年提出。它主要由编码器(Encoder)和解码器(Decoder)组成。
    • Transformer的关键特点是自注意力机制(Self-Attention Mechanism),能够有效捕捉输入序列中不同位置之间的依赖关系。
  2. 文本生成

    • LLM能够生成连贯且富有创意的自然语言文本,应用于对话系统、写作辅助、新闻生成等领域。
  3. 机器翻译

    • LLM通过学习双语或多语种的翻译对,可以实现高质量的自动翻译。
  4. 问答系统

    • 预训练语言模型可以用来构建智能问答系统,能够理解用户的问题并生成准确的回答。
  5. 文本摘要

    • LLM可以生成简洁的文本摘要,帮助用户快速获取关键信息。
  6. 情感分析

    • 通过微调预训练模型,LLM可以进行情感分析,判断文本的情感倾向。
  7. 信息检索

    • LLM可以用于信息检索任务,通过理解查询意图和文档内容,提高检索结果的相关性。
    • 自注意力机制(Self-Attention Mechanism)

      • 自注意力机制通过计算输入序列中每个词与其他词的相关性权重,生成加权和作为输出。这种机制使得模型能够灵活地关注序列中的重要信息。
      • 自注意力机制的核心公式包括查询(Query)、键(Key)和值(Value)之间的点积操作。
    • 多头注意力(Multi-Head Attention)

      • 多头注意力机制通过并行执行多个自注意力操作,并将它们的输出进行拼接,从而捕捉到更丰富的上下文信息。
      • 每个头(Head)可以学习不同的表示,使得模型具有更强的表达能力。
    • 位置编码(Positional Encoding)

      • 因为Transformer架构没有内置的顺序信息,所以引入位置编码来为输入序列中的每个位置添加位置信息。
      • 常用的位置信息包括正弦和余弦函数。
    • 语言模型(Language Model)

      • 语言模型是一种统计模型,用于预测序列中的下一个词或填补掩盖的词。常见的语言模型任务包括自回归语言模型(Autoregressive Language Model, 如GPT)和遮掩语言模型(MLM,如BERT)。
    • 生成预训练(Generative Pre-trained Transformer, GPT)

      • GPT是一种自回归语言模型,通过预训练学习生成连续的文本。GPT模型家族(如GPT-2、GPT-3、GPT-4)在文本生成任务中表现出色。
      • 自回归模型通过依次预测序列中的每个词,前向生成文本。
    • 双向编码器表示(Bidirectional Encoder Representations, BERT)

      • BERT是一种基于遮掩语言模型任务的双向Transformer模型。它在预训练阶段随机遮掩输入文本中的部分词,然后训练模型预测这些被遮掩的词。
      • BERT在各种NLP任务上取得了显著的效果,包括问答、文本分类和命名实体识别等。
    • 零样本学习(Zero-Shot Learning)和少样本学习(Few-Shot Learning)

      • 零样本学习指模型在没有见过具体任务样本的情况下,能够进行推理和预测。
      • 少样本学习则指模型在仅见过少量任务样本的情况下,能够进行有效的推理和预测。
      • GPT-3展示了强大的零样本和少样本学习能力,能够在仅提供任务描述或少量示例的情况下完成各种任务。
        卷积神经网络(CNN)

        卷积神经网络(CNN)在计算机视觉领域广泛应用。其基本组件包括卷积层和池化层:

      • 卷积层:通过卷积核进行局部感知和特征提取,捕捉图像的局部模式。
      • 池化层:通过平均池化或最大池化减少特征图的尺寸,降低计算复杂度,增强模型的平移不变性。
      • 反向传播:通过雅可比矩阵计算卷积层和池化层的梯度,实现参数更新。
      • CNN在图像分类、目标检测、图像分割等任务中表现优异,是计算机视觉领域的基础模型之一。

        结语

        第四周的学习内容丰富且深入,涵盖了特征编码、文本数据处理、RNN及其变体、GAN、NeRF、Transformer、大语言模型和CNN等多个重要主题。这些知识不仅加强了我们对神经网络和深度学习的理解,还为我们在实际应用中解决复杂问题提供了坚实的基础。通过本周的学习,我们不仅掌握了理论知识,还积累了大量实践经验,为后续的研究和应用打下了坚实的基础。

  • 32
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值