HDU 1124(数论)

Factorial

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4258    Accepted Submission(s): 2819


Problem Description
The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically. 
ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high even for a relatively small N. 

The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function. 

For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1<N2, then Z(N1) <= Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.
 

Input
There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000. 
 

Output
For every number N, output a single line containing the single non-negative integer Z(N).
 

Sample Input
  
  
6 3 60 100 1024 23456 8735373
 

Sample Output
  
  
0 14 24 253 5861 2183837
题意: 说了一大堆,其实就是让求一个数n的阶乘末尾0的个数。
思路: 我们知道0的来源就是2和5的相乘,,那么我们就可以统计2和5 的个数 以小的个数为准,但是很显然2的个数大于5的个数,
注意(4 = 2 * 2 )所以4 是两个2 同样 8是 3 个 2 ,那么我们就可以统计 从 1 到 n 中5 的个数,当然 25 , 50 要统计两边 ,125 ,250等 要统计 3遍 ,因为 25 = 5 * 5,,50 = 2 *5 *5 ,,125 = 5 * 5 * 5。。。
代码:
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>

using namespace std;

int main()
{
	int fin;
	int t,n;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		fin=0;
		int temp=n/5;
		while(temp)
		{
			fin+=temp;
			temp/=5;
		}
		printf("%d\n",fin);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值