poj 1061 青蛙的约会

青蛙的约会
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 120943 Accepted: 25531

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4
 
思路: 扩展 欧几里得 对于一个特定的 二元一次方程  求解的问题 
当  两个青蛙相遇的时候  就相当于 (x+km)-(y+kn)=kk* l 
转移一下就是 k(m-n) -kk *l = y-x  这个方程  而扩展欧几里得就是一个很快的
求  此类方程的解的方法。 

博客: 扩展gcd的思想和代码
 
代码: 
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>

using namespace std;

typedef long long ll;

ll m,n,x,y,l;


ll exgcd(ll a,ll b,ll &x,ll &y)
{
	if(b==0)
	{
		x=1;  y=0; return a;
	}
	ll num=exgcd(b,a%b,x,y);
	
	ll tmp=x;
	x=y;
	y=tmp-a/b*y;
	
	return num;
}

ll a,b;

int main()
{
	while(cin>>x>>y>>m>>n>>l)
	{
	
	ll num;
	a=m-n;  b=l;  num=y-x;
	if(a<0)
	{
		a=-a; num=-num;
	}
	
	ll gg=exgcd(a,b,x,y);
	
	//printf("a: %d b: %d gcd: %d\n",a,b,num);
	
	if(num%gg!=0)
	{
		printf("Impossible\n");
	}
	else
	{
		x=x*num/gg;
		ll t=b/gg;
		if(x>=0)
		{
			x=x%t;
		}
		else x=x%t+t;
		printf("%lld\n",x);
	}
	
	}
	
	
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值