开关问题
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 9328 | Accepted: 3754 |
Description
有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开。你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态。对于任意一个开关,最多只能进行一次开关操作。你的任务是,计算有多少种可以达到指定状态的方法。(不计开关操作的顺序)
Input
输入第一行有一个数K,表示以下有K组测试数据。
每组测试数据的格式如下:
第一行 一个数N(0 < N < 29)
第二行 N个0或者1的数,表示开始时N个开关状态。
第三行 N个0或者1的数,表示操作结束后N个开关的状态。
接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。每组数据以 0 0 结束。
每组测试数据的格式如下:
第一行 一个数N(0 < N < 29)
第二行 N个0或者1的数,表示开始时N个开关状态。
第三行 N个0或者1的数,表示操作结束后N个开关的状态。
接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。每组数据以 0 0 结束。
Output
如果有可行方法,输出总数,否则输出“Oh,it's impossible~!!” 不包括引号
Sample Input
2 3 0 0 0 1 1 1 1 2 1 3 2 1 2 3 3 1 3 2 0 0 3 0 0 0 1 0 1 1 2 2 1 0 0
Sample Output
4 Oh,it's impossible~!!
Hint
第一组数据的说明:
一共以下四种方法:
操作开关1
操作开关2
操作开关3
操作开关1、2、3 (不记顺序)
一共以下四种方法:
操作开关1
操作开关2
操作开关3
操作开关1、2、3 (不记顺序)
思路: 典型的 最简单的 二进制高斯消元。
其实本题就可以转换为求一个矩阵的 自由变元的个数 我们可以根据 开关之间的相互关系 可以确定出 一个 开关之间的关系矩阵
a[ i ][ j ] = 1 表示 改变 开关 j 的状态 也间接的改变了 i 的状态 。 那么我们就可以得到一个系数矩阵 。 而确定矩阵的解 当然需要等号右边的 y 那么我们可以假设矩阵 b[n] 表示最后的结果 矩阵 那么最后的结果矩阵 其实取决于 初末状态 当初末状态不相等时 那么 我们 就设为1 表示需要改变状态 否则为 0 那么我们其实就是 求 a * x = b 的矩阵的解的个数 。
代码:
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#define N 35
using namespace std;
struct node
{
int m[N][N];
};
node a;
int st[N],en[N];
int n;
int gauss()
{
int ans=0,i=0,j=0,k=0,r=0;
for(i=1,j=1;i<=n && j<=n;j++)
{
k=i; //当前消元到第i行
while(k<=n && !a.m[k][j]) k++; //直到找到第j列的第一个是1的元素所在的行k
if(a.m[k][j]) //此处包含k>n的情况
{
for(r=1;r<=n+1;r++) //将第k行换到当前消元的行i
swap(a.m[i][r],a.m[k][r]);
for(r=1;r<=n;r++) //如果当前行的第j列为1,除了第i行外的其他n-1行进行消元
{
if(r!=i && a.m[r][j])
{
for(k=i;k<=n+1;k++)
a.m[r][k]=a.m[r][k]^a.m[i][k];
}
}
i++; //成功消元第i行,消元下面的行
}
}
for(j=i;j<=n;j++) //从第i行开始,如果有增广列不为0,则无解
{
if(a.m[j][n+1])
return -1;
}
return 1<<(n-i+1); //共有2^(n-i+1)种解
}
int main()
{
int cas;
int x,y;
cin>>cas;
while(cas--)
{
cin>>n;
memset(a.m,0,sizeof(a.m));
for(int i=1;i<=n;i++) cin>>st[i];
for(int i=1;i<=n;i++) cin>>en[i];
for(int i=1;i<=n;i++) a.m[i][n+1]=st[i]^en[i];
while(cin>>x>>y)
{
if(x==0&&y==0) break;
a.m[y][x]=1;
}
for(int i=1;i<=n;i++)
{
a.m[i][i]=1;
}
int ans=gauss();
if(ans==-1) printf("Oh,it's impossible~!!\n");
else printf("%d\n",ans);
}
return 0;
}