蓝桥 包子凑数

问题描述
  小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。


  每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。


  当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。


  小明想知道一共有多少种数目是包子大叔凑不出来的。
输入格式
  第一行包含一个整数N。(1 <= N <= 100)
  以下N行每行包含一个整数Ai。(1 <= Ai <= 100)
输出格式
  一个整数代表答案。如果凑不出的数目有无限多个,输出INF。
样例输入
2
4
5
样例输出
6
样例输入
2
4
6
样例输出
INF
样例说明
  对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
  对于样例2,所有奇数都凑不出来,所以有无限多个。
数据规模和约定
  峰值内存消耗(含虚拟机) < 256M
  CPU消耗 < 1000ms




  请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。


  注意:
  main函数需要返回0;
  只使用ANSI C/ANSI C++ 标准;
  不要调用依赖于编译环境或操作系统的特殊函数。
  所有依赖的函数必须明确地在源文件中 #include <xxx>
  不能通过工程设置而省略常用头文件。


  提交程序时,注意选择所期望的语言类型和编译器类型。

欧几里得的变形:  如果给你的n个数的最大公约数为1   那么就可以确定  到后面由这几个数不能组成的数一定是有限的。

所以最重要的就是判断他们的最大公约数是否为1  。  然后就可以暴力  或者用 完全背包进行解题 因为 包子的笼数是无限的。

所以可以设定一个背包的容量 然后判断哪些容量可以凑出。

代码: 

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#define N 100005

using namespace std;

int dp[N];
int v[N];
int n;

int gcd(int a,int b)
{
	if(a%b==0) return b;
	else return gcd(b,a%b);
}

int jud()  //  如果所有数 的最大公约数为 1   那么不能凑出的数就是有限 的。 
{
	int x=v[1];
	
	for(int i=2;i<=n;i++)
	{
		x=gcd(x,v[i]);
	}
	
	//printf("%d\n",x);
	
	if(x!=1) return 1;
	else return 0;
	
//	printf("  f  :  %d\n",f);
	
}


int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>v[i];
	}
	
	int f=0;
	//判断是否有1
	for(int i=1;i<=n;i++)
	{
		if(v[i]==1){
			f=1;break;
		}
	} 
	if(f){
		printf("0\n");
		return 0;
	}
	
	f=jud();//判断所有的数是否互质
	
	if(f)
	{
		printf("INF\n");
		return 0;
	} 
	
	memset(dp,0,sizeof(dp));
	dp[0]=1;//初始条件
	for(int i=1;i<=n;i++)
	{
		for(int j=v[i];j<N;j++)
		{
			dp[j]=max(dp[j],dp[j-v[i]]);//如果j 可以通过已有的包子 凑出那么置1.
		}
	}
	
	int ans=0;
	for(int i=1;i<N;i++)
	{
		if(!dp[i]) ans++;
	}
	
	printf("%d\n",ans);
	return 0;
} 

因为题目给的数据 并不是很大  所以暴力也可以过。

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>

using namespace std;

int n;
int vis[10005];
int m;
int v[105];


int gcd(int a,int b)
{
	if(a%b==0) return b;
	else return gcd(b,a%b);
}

int jud()  // 判断是否有互质的一对数存在   如果有  那么就不会是 inf 
{
	int x=v[1];
	
	for(int i=2;i<=n;i++)
	{
		x=gcd(x,v[i]);
	}
	
	//printf("%d\n",x);
	
	if(x!=1) return 1;
	else return 0;
	
//	printf("  f  :  %d\n",f);
	
}

int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>v[i];
    }

    int f=0;
    for(int i=1;i<=n;i++)
    {
        if(v[i]==1){
            f=1;
            break;
        }
    }
    if(f){  //biao shi you 1  zhe ge yuan su cunzai
        printf("0\n");
        return 0;
    }

    if(jud())
    {
        printf("INF\n");
        return 0;
    }

    int ans=0;
    for(int i=1;i<=n;i++)
    {
        vis[v[i]]=1;
    }

    for(int i=1;i<=10000;i++)
    {
        if(vis[i]){
            for(int j=i;j<=10000;j++)
            {
                if(vis[j]&&(i+j<=10000)){
                    vis[i+j]=1;
                }
            }
        }
    }

    for(int i=1;i<=10000;i++){
        if(!vis[i]) ans++;
    }

    printf("%d\n",ans);
    return 0;
}

/*

2
4
5


2
4
6



*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值