问题描述
小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。
每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入格式
第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)
输出格式
一个整数代表答案。如果凑不出的数目有无限多个,输出INF。
样例输入
2
4
5
4
5
样例输出
6
样例输入
2
4
6
4
6
样例输出
INF
样例说明
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。
对于样例2,所有奇数都凑不出来,所以有无限多个。
数据规模和约定
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include <xxx>
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include <xxx>
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
欧几里得的变形: 如果给你的n个数的最大公约数为1 那么就可以确定 到后面由这几个数不能组成的数一定是有限的。
所以最重要的就是判断他们的最大公约数是否为1 。 然后就可以暴力 或者用 完全背包进行解题 因为 包子的笼数是无限的。
所以可以设定一个背包的容量 然后判断哪些容量可以凑出。
代码:
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#define N 100005
using namespace std;
int dp[N];
int v[N];
int n;
int gcd(int a,int b)
{
if(a%b==0) return b;
else return gcd(b,a%b);
}
int jud() // 如果所有数 的最大公约数为 1 那么不能凑出的数就是有限 的。
{
int x=v[1];
for(int i=2;i<=n;i++)
{
x=gcd(x,v[i]);
}
//printf("%d\n",x);
if(x!=1) return 1;
else return 0;
// printf(" f : %d\n",f);
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>v[i];
}
int f=0;
//判断是否有1
for(int i=1;i<=n;i++)
{
if(v[i]==1){
f=1;break;
}
}
if(f){
printf("0\n");
return 0;
}
f=jud();//判断所有的数是否互质
if(f)
{
printf("INF\n");
return 0;
}
memset(dp,0,sizeof(dp));
dp[0]=1;//初始条件
for(int i=1;i<=n;i++)
{
for(int j=v[i];j<N;j++)
{
dp[j]=max(dp[j],dp[j-v[i]]);//如果j 可以通过已有的包子 凑出那么置1.
}
}
int ans=0;
for(int i=1;i<N;i++)
{
if(!dp[i]) ans++;
}
printf("%d\n",ans);
return 0;
}
因为题目给的数据 并不是很大 所以暴力也可以过。
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int n;
int vis[10005];
int m;
int v[105];
int gcd(int a,int b)
{
if(a%b==0) return b;
else return gcd(b,a%b);
}
int jud() // 判断是否有互质的一对数存在 如果有 那么就不会是 inf
{
int x=v[1];
for(int i=2;i<=n;i++)
{
x=gcd(x,v[i]);
}
//printf("%d\n",x);
if(x!=1) return 1;
else return 0;
// printf(" f : %d\n",f);
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>v[i];
}
int f=0;
for(int i=1;i<=n;i++)
{
if(v[i]==1){
f=1;
break;
}
}
if(f){ //biao shi you 1 zhe ge yuan su cunzai
printf("0\n");
return 0;
}
if(jud())
{
printf("INF\n");
return 0;
}
int ans=0;
for(int i=1;i<=n;i++)
{
vis[v[i]]=1;
}
for(int i=1;i<=10000;i++)
{
if(vis[i]){
for(int j=i;j<=10000;j++)
{
if(vis[j]&&(i+j<=10000)){
vis[i+j]=1;
}
}
}
}
for(int i=1;i<=10000;i++){
if(!vis[i]) ans++;
}
printf("%d\n",ans);
return 0;
}
/*
2
4
5
2
4
6
*/