poj 2117 判断删除一个点后的最大联通分支个数

Electricity
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 6019 Accepted: 1919

Description

Blackouts and Dark Nights (also known as ACM++) is a company that provides electricity. The company owns several power plants, each of them supplying a small area that surrounds it. This organization brings a lot of problems - it often happens that there is not enough power in one area, while there is a large surplus in the rest of the country. 

ACM++ has therefore decided to connect the networks of some of the plants together. At least in the first stage, there is no need to connect all plants to a single network, but on the other hand it may pay up to create redundant connections on critical places - i.e. the network may contain cycles. Various plans for the connections were proposed, and the complicated phase of evaluation of them has begun. 

One of the criteria that has to be taken into account is the reliability of the created network. To evaluate it, we assume that the worst event that can happen is a malfunction in one of the joining points at the power plants, which might cause the network to split into several parts. While each of these parts could still work, each of them would have to cope with the problems, so it is essential to minimize the number of parts into which the network will split due to removal of one of the joining points. 

Your task is to write a software that would help evaluating this risk. Your program is given a description of the network, and it should determine the maximum number of non-connected parts from that the network may consist after removal of one of the joining points (not counting the removed joining point itself). 

Input

The input consists of several instances. 

The first line of each instance contains two integers 1 <= P <= 10 000 and C >= 0 separated by a single space. P is the number of power plants. The power plants have assigned integers between 0 and P - 1. C is the number of connections. The following C lines of the instance describe the connections. Each of the lines contains two integers 0 <= p1, p2 < P separated by a single space, meaning that plants with numbers p1 and p2 are connected. Each connection is described exactly once and there is at most one connection between every two plants. 

The instances follow each other immediately, without any separator. The input is terminated by a line containing two zeros. 

Output

The output consists of several lines. The i-th line of the output corresponds to the i-th input instance. Each line of the output consists of a single integer C. C is the maximum number of the connected parts of the network that can be obtained by removing one of the joining points at power plants in the instance.

Sample Input

3 3
0 1
0 2
2 1
4 2
0 1
2 3
3 1
1 0
0 0

Sample Output

1
2
2

Source

题意:  给你n个点和m 条边 组成的一个图  那么你需要求出删除一个点后最大的联通分支。

思路:  直接用tarjan  打出 删除某一个点后的联通分支的增加量。    然后找出联通分支量最大的那个点   并且找到原本的联通分支的个数。  这里有个坑点就是  必须要删除一个点   那么如果  n为x  m 为0   就会出现删除一个点后的最大联通分支个数 小于原来的的联通分支个数。


代码: 

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>

using namespace std;

const int N=10005;
const int M=200010;

struct Edge
{
	int to;
	bool cut;
	int next;
}edge[M];

int head[N],tot;
int low[N],dfn[N],Stack[N];
bool instack[N];
int index,top;
bool cut[N];
int add_block[N];
int bridge;

int n,m;

void add(int u,int v)
{
	edge[++tot].to=v;
	edge[tot].cut=0;
	edge[tot].next=head[u];
	head[u]=tot;
	return ;
}

void init()
{
	tot=0;
	memset(head,-1,sizeof(head));
	
	memset(dfn,0,sizeof(dfn));
	memset(instack,0,sizeof(instack));
	memset(add_block,0,sizeof(add_block));
	memset(cut,0,sizeof(cut));
	index=top=0;
	bridge=0;
}


void tarjan(int u,int pre)
{
	int v;
	low[u]=dfn[u]=++index;
	Stack[top++]=u;
	instack[u]=1;
	
	int son=0;
	for(int i=head[u];i!=-1;i=edge[i].next)
	{
		v=edge[i].to;
		if(v==pre) continue;
		
		if(!dfn[v])
		{
			son++;
			tarjan(v,u);
			if(low[v]<low[u]) low[u]=low[v];
			
			if(low[v]>dfn[u]){
				bridge++;
				edge[i].cut=1;
				edge[i^1].cut=1;
			}
			
			if(u!=pre&&low[v]>=dfn[u]){
				cut[u]=1;
				add_block[u]++;
			}
		}
		else if(dfn[v]<low[u]){
			low[u]=dfn[v];
		}
	}
	
	if(u==pre&&son>1) cut[u]=1;
	if(u==pre) add_block[u]=son-1;
	instack[u]=0;
	top--;
	
	return ;
}

int main()
{
	int u,v;
	while(scanf("%d %d",&n,&m)!=EOF)
	{
		if(n==0&&m==0) break;
		init();
		
		for(int i=1;i<=m;i++)
		{
			scanf("%d %d",&u,&v);
			u++; v++;
			add(u,v);
			add(v,u);
		}
		
		memset(dfn,0,sizeof(dfn));
	    memset(instack,0,sizeof(instack));
	    memset(add_block,0,sizeof(add_block));
	    memset(cut,0,sizeof(cut));
	    index=top=0;
		
		int ans=0;
		for(int i=1;i<=n;i++){
			if(!dfn[i]){
				ans++;
				tarjan(i,i);
			}
		}
		int maxx=-1;
		for(int i=1;i<=n;i++)
		{
			if(add_block[i]>maxx) maxx=add_block[i];
		}
		
		ans+=maxx;
		printf("%d\n",ans);
		
	}
	
	return 0;
}

阅读更多
文章标签: 割点
个人分类: 割点割边
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭