链接: http://codeforces.com/contest/1013/problem/D
题意: 现在有一个n*m的方格,现在给你q个方格是已经涂好色的,而且方格有个自动涂色的功能,如果一个矩形的三个角被涂上颜色了,那么第四个角就被自动涂上颜色。 问你最少需要手动涂几个点呢。
思路: 其实我们就考虑本来已经涂好色的点中,哪些是有效点,哪些是无效点就可以,这里我把有效点定义为在我涂了其他颜色后,这个点还没有被涂上颜色,那么这个点就是有效点。 那么稍微画几个就可以找到,其实答案就是n+m-1-有效点的个数。但是死活没有想起来用并查集来维护有效点。 如果ABC三个点是一个矩形的三个点,那么我并查集维护一下,如果有第四个点D加入的话,那么肯定D是无效的。
代码:
#include<bits/stdc++.h>
using namespace std;
const int N =2e5+5;
int f[N*2];
int getf(int x)
{
return f[x]==x?x:(f[x]=getf(f[x]));
}
void merge(int x,int y)
{
int t1=getf(x);
int t2=getf(y);
if(t1!=t2){
f[t2]=t1;
}
}
int n,m,q;
int main()
{
cin>>n>>m>>q;
int ans=n+m-1;
int x,y;
for(int i=1;i<=n+m+2;i++) f[i]=i;
for(int i=1;i<=q;i++){
cin>>x>>y;
y+=n;
int t1=getf(x);
int t2=getf(y);
if(t1==t2) continue; // 无效点
ans--;
merge(x,y);
}
cout<<ans<<endl;
return 0;
}