题目
有N个不同的正整数数x1, x2, … xN 排成一排,我们可以从左边或右边去掉连续的i个数(只能从两边删除数),1<=i<=n,剩下N-i个数,再把剩下的数按以上操作处理,直到所有的数都被删除为止。
每次操作都有一个操作价值,比如现在要删除从i位置到k位置上的所有的数。操作价值为|xi – xk|*(k-i+1),如果只去掉一个数,操作价值为这个数的值。
任务
如何操作可以得到最大值,求操作的最大价值。
3<=N<=100
N个操作数为1..1000 之间的整数。
题解
刚开始想的是贪心,打算水几十分,但是贪心策略漏洞太大,担心打了半天一个点都水不过去,于是放弃了
后来水完了第三题和第四题,看看第一道题,好像很难的样子,嗯,还是来水贪心(动规)吧
设了f[i,j]表示从前往后删了i个,从后往前删了j个,结果想了半天都没想到方程……
正解:
还是f[i,j],然而表示删除从i到j的序列所能得到的最大值。可以想到f[i,j]可以从几种状态转移过来:
1.把序列i..j切成两半,即i..k&k+1..j,然后你懂的,枚举k,f[i,j]=f[i,k]+f[k+1,j]
2.直接把i..j一整段删掉,代价为|xi – xk|*(k-i+1)
f[i,j]取两者最大值
循环的顺序不重要,只要保持答案由小区间转移到大区间就可以了
时间复杂度O(n3)
代码
var
n,i,j,k:longint;
a:array[0..100]of longint;
f:array[0..100,0..100]of longint;
function max(a,b,c:longint):longint;
begin
if a<b then a:=b;
if a<c then a:=c;
exit(a);
end;
begin
readln(n);
for i:=1 to n do
begin
read(a[i]);
f[i,i]:=a[i];
end;
for j:=2 to n do
for i:=j-1 downto 1 do
for k:=i to j-1 do
f[i,j]:=max(f[i,j],abs(a[i]-a[j])*(j-i+1),f[i,k]+f[k+1,j]);
writeln(f[1,n]);
end.