问题描述:
对于从 1 到 N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的。举个例子,如果 N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的:{3} 和 {1,2} ,这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数)如果 N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的:
{1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}
{2,5,7} 和 {1,3,4,6}
{3,4,7} 和 {1,2,5,6}
{1,2,4,7} 和 {3,5,6}
给出 N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出 0。程序不能预存结果直接输出。
数据输入:
从文件 subset.in 中读入数据,文件只有一行,且只有一个整数 N(1 <= N <= 39)
数据输出:
结果输出到文件 subset.out 中,输出划分方案总数,如果不存在则输出 0。
题解
认真读题,只要分成两个集合,而且数据十分之小,所以直接深搜
也可以动态规划,就相当于0/1背包问题,在价值为1-n的物品中选任意个物品使得物品总价值为(1+2+…+n)/2,求共有多少种方案
设f[i][j]表示前i个物品共取价值为j的方案数
f[i][j]可由选第i个和不选第i个得出,即
f[i][j]=f[i-1][j-i]+f[i-1][j]
答案是f[n][(1+2+…+n)/2]
代码
#include <cstdio>
using namespace std;
int n,f[1000][1000],m=0;
int main()
{
scanf("%d",&n);
m=(n*(n+1))/2;
if (m%2!=0) {printf("0");return(0);}
m=m/2;
f[0][0]=1;
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
f[i][j]=f[i-1][j-i]+f[i-1][j];
printf("%d",f[n][m]);
}