A 遨游
MWH寒假外出旅游,来到了S国。S国划分为N个省,第i个省有Ti座城市,编号分别为Ci1,Ci2,……CiTi(各省城市编号不会重复)。所有城市间有M条双向的道路连接,从任意一个城市出发,可到达一切城市,每条道路均须收费。
此时恰逢春运期间,S国交通运输局采取了优惠措施。当一条路的路费在[L…R]区间时,可免去。同时,每个省也有优惠措施,第i个省内的每条道路路费收其Xi%,连接第i个省和第j个省的每条道路路费收其(Xi%+Xj%)/2。
MWH想从城市s走到城市t,请求出一对L,R,确保:
1.MWH能免费到达目的地;
2.L≤R;
3.L、R均为整数;
4.L尽可能地大,R在满足L最大的前提下最小。
注意:因每条道路由各省的交通运输局直接管辖,所以每条道路的路费必须先得到省级优惠,再得到国家级优惠。
显然是二分+最短路判断答案可行性
100
#include <cstdio>
#include <cstring>
using namespace std;
const int max=100005;
int n,m,cnt,L,R,st,ed;
int ls[max],y[max*2],ne[max*2],p[max*2];
int w[max],xw[max];
int d[max],v[max*10];
bool bz[max];
bool spfa(int l,int r){
int h=0,t=1;
memset(d,0x3f,sizeof(d));
memset(bz,0,sizeof(bz));
v[1]=st;d[st]=0;bz[st]=1;
while (h<t){
int k=ls[v[++h]];
int x=v[h];
while (k){
int to=y[k],b=100;
if (p[to]==p[x]){
if (xw[p[to]]*w[k]>=l*100 && xw[p[to]]*w[k]<=r*100){
d[to]=0;
if (!bz[to]){
bz[to]=1;
v[++t]=to;
}
}
}
else
if ((xw[p[to]]+xw[p[x]])*w[k]>=l*200&&
(xw[p[to]]+xw[p[x]])*w[k]<=r*200){
d[to]=0;
if (!bz[to]){
bz[to]=1;
v[++t]=to;
}
}
k=ne[k];
}
}
if (d[ed]==0) return true;
else return false;
}
int main(){
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++){
int u,v,ww;
scanf("%d%d%d",&u,&v,&ww);
ne[++cnt]=ls[u];ls[u]=cnt;y[cnt]=v;w[cnt]=ww;
ne[++cnt]=ls[v];ls[v]=cnt;y[cnt]=u;w[cnt]=ww;
}
for (int i=1;i<=n;i++){
int t;
scanf("%d",&t);
for (int j=1;j<=t;j++){
int xt;
scanf("%d",&xt);
p[xt]=i;
}
}
for (int i=1;i<=n;i++)
scanf("%d",&xw[i]);
scanf("%d%d",&st,&ed);
int l=0,r=15000;
while (l<=r){
int mid=(l+r)/2;
if (spfa(mid,100000)) l=mid+1,L=mid;
else r=mid-1;
}
l=L,r=15000;
while (l<=r){
int mid=(l+r)/2;
if (spfa(L,mid)) r=mid-1,R=mid;
else l=mid+1;
}
printf("%d %d",L,R);
}
B 今天你AK了吗?
(当然没有)
AK:All kill
“你为什么没背书?”
“没有为什么,我就是没背书。”
“……我去年买了个表,G—U—N!”
头铁王InFleaKing把背书的时间都拿去列排列了…
n=3的排列一共有六个(顺序按字典序从小到大):
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
气不打一处来的InFleaKing把n的排列打乱了。
他想知道字典序第k小的n的排列是什么?
由于InFleaKing被捉去背书了,所以这个问题只能交给被万人顶礼膜拜的dalao您来解决了。
60
#include <cstdio>
#include <iostream>
using namespace std;
int n;
long long k;
long long a[20];
int b[20];
int main(){
cin>>n>>k;
if (n==1&&k==1) { printf("1");return 0;}
a[1]=1;
for (int i=2;i<=n;i++) a[i]=a[i-1]*i;
for (int i=n;i>1;i--){
if (k<=1) break;
long long ans=(k/a[i-1])+1,dd=n;
if (k%a[i-1]==0) ans--;
for (int j=1;j<=n;j++){
if (!b[j]) ans--;
if (ans==0) {dd=j;break;}
}
b[dd]=1;
cout<<dd;
printf(" ");
k=k%a[i-1];
}
if (k==1){
for (int i=1;i<=n;i++)
if (!b[i]) printf("%d ",i);
} else
for (int i=n;i>=1;i--)
if (!b[i]) printf("%d ",i);
}
C 简单数学题
话说, 小X是个数学大佬,他喜欢做数学题。有一天,小X想考一考小Y。他问了小Y一道数学题。题目如下:
对于一个正整数N,存在一个正整数T(0<T<N),使得的值是正整数。
小X给出N,让小Y给出所有可能的T。如果小Y不回答这个神奇的大佬的简单数学题,他学神的形象就会支离破碎。所以小Y求你帮他回答小X的问题。
数学方法
设
x
=
N
−
T
x=N-T
x=N−T,代入原式,然后反求出
T
=
N
−
x
T=N-x
T=N−x,也代入原式,然后设这时的式子值为k,经过等式变形得
N
/
(
2
k
−
1
)
=
x
N/(2k-1)=x
N/(2k−1)=x,由k的定义得k为正整数,所以2k-1是N的因数,而且易得2k-1一定是一个奇数,也就是求出N的奇因数。这时就可以通过求较小的一个因数求出大的另一个因数,就可以省时间。求出奇因数后把(N-N/奇因数)加入答案,最后把答案排序后输出
40
#include <cstdio>
using namespace std;
int n,cnt;
int a[10000];
int main(){
scanf("%d",&n);
if (n<=2) { printf("0");return 0;}
int m=n/3;
if (m%2!=0) m++;
for (int i=m;i<n;i+=2)
if ((n-i/2)%(n-i)==0)
a[++cnt]=i;
if (cnt) printf("%d ",cnt); else printf("0");
for (int i=1;i<=cnt;i++)
printf("%d ",a[i]);
}
100
#include <cstdio>
#include <iostream>
#include <math.h>
#include <cmath>
#include <algorithm>
using namespace std;
int cnt;
long long n;
long long a[10000];
int main(){
cin>>n;
double m=n;
long long c=(long long)sqrt(m);
for (int i=1;i<=c;i++)
if ((long long)n%i==0){
if (i%2==1&&(long long)(n-n/i)!=0)
a[++cnt]=(long long)n-n/i;
long long d=i;
if ((long long)n/i!=i){
d=(long long)n/i;
if (d%2==1&&(n-n/d)!=0) a[++cnt]=n-n/d;
}
}
sort(a+1,a+1+cnt);
if (cnt==0) printf("0"); else
{
printf("%d ",cnt);
for (int i=1;i<=cnt;i++)
{
cout<<a[i];
printf(" ");
}
}
}