时间序列预测
文章平均质量分 68
洋葱味甜甜圈
无所畏惧
展开
-
基于希尔伯特曲线(Hilbert curve)的轻量化图像自编码器
基于希尔伯特曲线(Hilbert curve)的图像自编码器 1. 希尔伯特曲线介绍 简而言之,希尔伯特曲线能够将二维图像展开为一维。也有其他研究学者基于希尔伯特曲线的高维空间展开。具体介绍可以参考如下: 维基百科 Video 动画演示 实际上希尔伯特曲线是一种无穷的思想。在上个世纪的数学快速发展中,基于皮亚诺曲线希尔伯特提出了其改良版-希尔伯特曲线。在实际的应用中,N阶希尔伯特曲线才能够真正意义上遍历二维图像的所有点,然而N阶是无法达到的。但即使这样,仍然无法阻挡其在实际应用中的脚步。 IP地址映射 生物原创 2021-04-07 20:27:29 · 1161 阅读 · 3 评论 -
时间序列预测-传统统计学模型ARIMA
ARIMA单变量预测股价DEMO时间序列介绍:统计学模型-ARIMA介绍ARIMA 参数选择说明源代码解析参考资料 时间序列介绍: 时间序列(TIME-SERISE)充斥着我们生活的空间,在金融、医疗、交通等领域都可体现,甚至我认为人类个体生存生活的时间线都是时间序列,个体在什么时间干了什么事,具体量化细分皆是时间序列。在严格学术意义上大致将时间序列区别为,平稳时间序列和非平稳时间序列。平稳时间序列是标准的严平稳时间序列,表示有着明显的周期性的序列数据,在整个序列中不存在“噪声”等,而现实的世界中大都是非平原创 2021-02-04 00:24:38 · 1946 阅读 · 0 评论