文章目录
1. 题目描述
给定 n
个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
示例 1:
输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例 2:
输入:height = [4,2,0,3,2,5]
输出:9
提示:
n == height.length
1 <= n <= 2 * 10^4
0 <= height[i] <= 10^5
2. 理解题目
这道题要求我们计算能够接住的雨水总量。我们可以将题目形象地理解为:
- 给定一个数组,每个元素代表一个柱子的高度
- 柱子之间可以接雨水
- 我们需要计算所有位置能接的雨水总量
关键点:
- 位置i能接多少雨水,取决于它左右两侧最高柱子的较小值与当前高度的差值
- 只有当一个位置的左右两侧都有更高的柱子时,这个位置才能接雨水
- 最两端的柱子外侧没有柱子,不能接雨水
3. 解法一:暴力法
3.1 思路
对于数组中的每个元素,我们找出下雨后水能达到的最高位置,等于两边最大高度的较小值减去当前高度的值。
具体算法:
- 初始化结果
ans = 0
- 遍历数组中的每个元素(除了两端点):
- 寻找当前元素左边的最大值
left_max
- 寻找当前元素右边的最大值
right_max
- 计算当前位置能接的雨水:
min(left_max, right_max) - height[i]
- 如果能接雨水(结果大于0),则累加到结果中
- 寻找当前元素左边的最大值
3.2 Java代码实现
public class Solution {
public int trap(int[] height) {
int n = height.length;
int result = 0;
// 遍历数组中的每个元素,除了两端点
for (int i = 1; i < n - 1; i++) {
int leftMax = 0;
int rightMax = 0;
// 寻找当前元素左边的最大值
for (int j = 0; j <= i; j++) {
leftMax = Math.max(leftMax, height[j]);
}
// 寻找当前元素右边的最大值
for (int j = i; j < n; j++) {
rightMax = Math.max(rightMax, height[j]);
}
// 计算当前位置能接的雨水
result += Math.min(leftMax, rightMax) - height[i];
}
return result;
}
}
3.3 代码详解
- 我们遍历数组中的每个元素(除了两端点,因为它们不能接水)
- 对于每个位置i:
- 使用两个循环分别找出它左边的最大值
leftMax
和右边的最大值rightMax
- 当前位置能接的雨水量为
min(leftMax, rightMax) - height[i]
- 将所有位置能接的雨水累加得到总的雨水量
- 使用两个循环分别找出它左边的最大值
3.4 复杂度分析
- 时间复杂度:O(n²),其中 n 是数组的长度。对于每个元素,我们需要向左和向右扫描寻找最大值,每次扫描的时间复杂度为O(n)。
- 空间复杂度:O(1),只需要常数级别的额外空间。
3.5 问题与改进
暴力法简单直观,但效率较低。主要问题是对于每个位置,我们都要重新计算左右两侧的最大值,导致了大量重复计算。
4. 解法二:动态规划
4.1 思路
我们可以提前计算并存储每个位置的左右两侧最大值,避免重复计算。
具体算法:
- 创建两个数组
leftMax
和rightMax
,分别存储每个位置的左侧和右侧最大值 - 预处理这两个数组:
leftMax[i]
表示位置i及其左侧的最大值rightMax[i]
表示位置i及其右侧的最大值
- 遍历数组计算每个位置能接的雨水并累加
4.2 Java代码实现
public class Solution {
public int trap(int[] height) {
if (height == null || height.length < 3) {
return 0;
}
int n = height.length;
int result = 0;
// 创建两个数组存储每个位置的左右最大值
int[] leftMax = new int[n];
int[] rightMax = new int[n];
// 预处理左侧最大值
leftMax[0] = height[0];
for (int i = 1; i < n; i++) {
leftMax[i] = Math.max(leftMax[i - 1], height[i]);
}
// 预处理右侧最大值
rightMax[n - 1] = height[n - 1];
for (int i = n -