Java详解LeetCode 热题 100(07):LeetCode 42. 接雨水(Trapping Rain Water)详解

1. 题目描述

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

示例 1:

输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。

示例 2:

输入:height = [4,2,0,3,2,5]
输出:9

提示:

  • n == height.length
  • 1 <= n <= 2 * 10^4
  • 0 <= height[i] <= 10^5

2. 理解题目

这道题要求我们计算能够接住的雨水总量。我们可以将题目形象地理解为:

  1. 给定一个数组,每个元素代表一个柱子的高度
  2. 柱子之间可以接雨水
  3. 我们需要计算所有位置能接的雨水总量

关键点:

  • 位置i能接多少雨水,取决于它左右两侧最高柱子的较小值与当前高度的差值
  • 只有当一个位置的左右两侧都有更高的柱子时,这个位置才能接雨水
  • 最两端的柱子外侧没有柱子,不能接雨水

3. 解法一:暴力法

3.1 思路

对于数组中的每个元素,我们找出下雨后水能达到的最高位置,等于两边最大高度的较小值减去当前高度的值。

具体算法:

  1. 初始化结果 ans = 0
  2. 遍历数组中的每个元素(除了两端点):
    • 寻找当前元素左边的最大值 left_max
    • 寻找当前元素右边的最大值 right_max
    • 计算当前位置能接的雨水:min(left_max, right_max) - height[i]
    • 如果能接雨水(结果大于0),则累加到结果中

3.2 Java代码实现

public class Solution {
   
    public int trap(int[] height) {
   
        int n = height.length;
        int result = 0;
        
        // 遍历数组中的每个元素,除了两端点
        for (int i = 1; i < n - 1; i++) {
   
            int leftMax = 0;
            int rightMax = 0;
            
            // 寻找当前元素左边的最大值
            for (int j = 0; j <= i; j++) {
   
                leftMax = Math.max(leftMax, height[j]);
            }
            
            // 寻找当前元素右边的最大值
            for (int j = i; j < n; j++) {
   
                rightMax = Math.max(rightMax, height[j]);
            }
            
            // 计算当前位置能接的雨水
            result += Math.min(leftMax, rightMax) - height[i];
        }
        
        return result;
    }
}

3.3 代码详解

  1. 我们遍历数组中的每个元素(除了两端点,因为它们不能接水)
  2. 对于每个位置i:
    • 使用两个循环分别找出它左边的最大值leftMax和右边的最大值rightMax
    • 当前位置能接的雨水量为min(leftMax, rightMax) - height[i]
    • 将所有位置能接的雨水累加得到总的雨水量

3.4 复杂度分析

  • 时间复杂度:O(n²),其中 n 是数组的长度。对于每个元素,我们需要向左和向右扫描寻找最大值,每次扫描的时间复杂度为O(n)。
  • 空间复杂度:O(1),只需要常数级别的额外空间。

3.5 问题与改进

暴力法简单直观,但效率较低。主要问题是对于每个位置,我们都要重新计算左右两侧的最大值,导致了大量重复计算。

4. 解法二:动态规划

4.1 思路

我们可以提前计算并存储每个位置的左右两侧最大值,避免重复计算。

具体算法:

  1. 创建两个数组leftMaxrightMax,分别存储每个位置的左侧和右侧最大值
  2. 预处理这两个数组:
    • leftMax[i]表示位置i及其左侧的最大值
    • rightMax[i]表示位置i及其右侧的最大值
  3. 遍历数组计算每个位置能接的雨水并累加

4.2 Java代码实现

public class Solution {
   
    public int trap(int[] height) {
   
        if (height == null || height.length < 3) {
   
            return 0;
        }
        
        int n = height.length;
        int result = 0;
        
        // 创建两个数组存储每个位置的左右最大值
        int[] leftMax = new int[n];
        int[] rightMax = new int[n];
        
        // 预处理左侧最大值
        leftMax[0] = height[0];
        for (int i = 1; i < n; i++) {
   
            leftMax[i] = Math.max(leftMax[i - 1], height[i]);
        }
        
        // 预处理右侧最大值
        rightMax[n - 1] = height[n - 1];
        for (int i = n -
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全栈凯哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值