解决 failed to run cuBLAS routine cublasSgemm_v2: CUBLAS_STATUS_EXECUTION_FAILED

小问题 大烦恼 专栏收录该内容
22 篇文章 0 订阅

计算机配置

RTX2080 super,ubuntu16.04,tensorflow-gpu1.8,cuda9.0,cudnn7.6.4

(方法一)针对有人说是还有其他程序占用着GPU

报错信息(贴出最主要的两条):

tensorflow.python.framework.errors_impl.InternalError: Failed to create session
failed to run cuBLAS routine cublasSgemm_v2: CUBLAS_STATUS_EXECUTION_FAILED
#判断显存占用,报错并关闭session
if 'session' in locals() and session is not None:
    print('Close interactive session')
    session.close()
或者
#分配显存
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0' #use GPU with ID=0
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5 # maximun alloc gpu50% of MEM
config.gpu_options.allow_growth = True #allocate dynamically

但是结果还是报错,其实之前已经用

nvidia-smi

查看了显卡信息,是没有其他程序运行的,于是又查了下相关资料

CUDA问题

上边已经介绍了环境配置,其实问题就出在这里,当初下载CUDA的时候,只下载安装了CUDA9.0,而没有安装其升级包,这其实也是CUDA自己的问题,后边出了最新的更新包,升级CUDA9.0到最新就解决了该问题。你如果下载不来,可以从此处下载,提取码:3a0s。

更新

这个问题主要还是显卡,显卡驱动以及tensorflow不匹配导致的,可以参考官网,版本对应:
tensorflow
显卡驱动
对应起来,应该就没什么问题了

参考文章

[1]https://blog.csdn.net/sinat_30372583/article/details/79461468
[2]https://blog.csdn.net/thunder_k/article/details/90610218?depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-1&utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-1

  • 1
    点赞
  • 5
    评论
  • 5
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值