欧几里得算法和扩展欧几里得算法-java递归实现

定义

  已知整数a,b,扩展欧几里得算法可以在求得a、b的最大公约数的同时,能找到整数x、y,满足ax + by = gcd(a,b)

分析

 设 a>b

(1)显然当 b=0,gcd(a,b)= a。此时 x=1,y=0
(2)a>b>0 时

  • 设 ax1 + by1 = gcd(a,b)
  • bx2 + (a mod b)y2 = gcd(b,a mod b)

(3)由于 gcd(a,b)=  gcd(b,a mod b)

  • 那么 ax1+ by1= bx2+ (a mod b)y2
  • 即ax1+ by1= bx2+ (a - [a / b] * b)y2=ay2+ bx2- [a / b] * by2
  • 也就是ax1+ by1 == ay2+ b(x2- [a / b] *y2)
  • 根据恒等定理得:x1=y2; y1=x2- [a / b] *y2
  • 这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2
  • 上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。

java算法实现

import java.util.Scanner;

public class EEA {
	//扩展欧几里得算法求x、y
	static int x=-1;
	static int y=-1;
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Scanner cin = new Scanner(System.in);
		while(cin.hasNext()) {
			int a = cin.nextInt();
			int b = cin.nextInt();
			int k1 = eeaGcd(a,b);
			System.out.println("最大公因子是:"+k1+",其中x="+x+",y="+y);
		}
		cin.close();
	}
	
	//扩展欧几里得算法
	private static int eeaGcd(int a,int b) {
		//最简单的情形
		if(b==0) {
			x=1;
			y=0;
			return a;//最大公约数
		}else {
			//一般情形
			int r = eeaGcd(b,a%b);
			int t = x;
			x = y;
			y = t-a/b*y;
			return r;			
		}		
	}		
	
}

运行结果

500 200
最大公因子是:100,其中x=1,y=-2
10 2
最大公因子是:2,其中x=0,y=1
11 2
最大公因子是:1,其中x=1,y=-5

 

 

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
扩展欧几里算法是一种求解线性同余方程 ax ≡ 1 (mod m) 中 x 的逆元的方法。逆元是指数值 x 使得 ax 与 m 取模之后的结果为 1。 下面是一个用 Java 实现扩展欧几里算法求逆元的代码示例: ```java public class InverseElement { public static int extendedEuclidean(int a, int b) { int[] coeffs = new int[3]; // 存储扩展欧几里算法求解的系数 int x = 0, y = 0; while (b != 0) { coeffs = updateCoeffs(a, b, coeffs); a = coeffs[0]; b = coeffs[1]; x = coeffs[2]; y = coeffs[3]; } if (a == 1) { return (x % m + m) % m; // 防止结果为负数 } else { return -1; // 没有逆元 } } private static int[] updateCoeffs(int a, int b, int[] coeffs) { if (b == 0) { coeffs[0] = a; coeffs[1] = b; coeffs[2] = 1; coeffs[3] = 0; return coeffs; } coeffs = updateCoeffs(b, a % b, coeffs); int x1 = coeffs[2]; int y1 = coeffs[3]; coeffs[2] = y1; coeffs[3] = x1 - (a / b) * y1; return coeffs; } public static void main(String[] args) { int a = 7; int m = 11; int inverse = extendedEuclidean(a, m); System.out.println("逆元: " + inverse); } } ``` 在上述代码中,`extendedEuclidean` 方法实现扩展欧几里算法, `updateCoeffs` 方法用于更新系数, `main` 方法用于测试求逆元的结果。在示例中,我们以 `a = 7` 和 `m = 11` 为例来求解逆元。 按照扩展欧几里算法的步骤,我们归调用 `updateCoeffs` 方法来更新系数,直到 b 为 0。然后,如果 a 为 1,则返回取模后的 x 值作为逆元;否则,返回 -1 表示没有逆元。 输出结果为:逆元:8,表示在模 11 下,7 的逆元为 8。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值