python
ykzcs2000
这个作者很懒,什么都没留下…
展开
-
datawhale的图机器学习的开源学习
为了继续深入了解机器学习原创 2023-02-14 21:58:05 · 215 阅读 · 1 评论 -
kmean聚类算法
快速理解:1.有四个牧师去郊区布道,一开始牧师们随意选了几个布道点,并且把这几个布道点的情况公告给了郊区所有的居民,于是每个居民到离自己家最近的布道点去听课。2.听课之后,大家觉得距离太远了,于是每个牧师统计了一下自己的课上所有的居民的地址,搬到了所有地址的中心地带,并且在海报上更新了自己的布道点的位置。3.牧师每一次移动不可能离所有人都更近,有的人发现A牧师移动以后自己还不如去B牧师处听课更近,于是每个居民又去了离自己最近的布道点……就这样,牧师每个礼拜更新自己的位置,居民根据自己的情况选择布道点,原创 2021-12-14 11:18:00 · 1007 阅读 · 0 评论 -
人工神经网络
神经网络可以看作机器学习的一种进阶,与传统机器学习算法相融起到事半功倍的奇妙效果。人工神经网络靠的是正向和反向传播来更新神经元, 从而形成一个好的神经系统, 本质上, 这是一个能让计算机处理和优化的数学模型. 而生物神经网络是通过刺激, 产生新的联结, 让信号能够通过新的联结传递而形成反馈. 虽然现在的计算机技术越来越高超, 不过我们身体里的神经系统经过了数千万年的进化, 还是独一无二的, 迄今为止, 再复杂, 再庞大的人工神经网络系统也不能替代我们的小脑袋. 我们应该感到自豪, 也应该珍惜上天的这份礼物原创 2021-12-14 10:09:56 · 808 阅读 · 0 评论 -
感知器算法
感知机是一种监督式学习。感知机找到的分界线总是直线,所以它是线性分类模型的一种。当然也有非线性分类模型:特征向量(x_1,x_2,x_3)是三维向量,通过感知机找到的分界就是三维空间中的平面,依然是线性分类模型:用感知机找到的分界,始终是特征向量所在空间的超平面,依然是线性分类模型。感知机只能将数据分为两类,并且分界线是直线,所以又称它为二分类线性模型,区别于多分类模型。分对:yi⋅d(xi)>0y_i\cdot d(\boldsymbol{x_i}) > 0yi⋅d(xi)原创 2021-12-13 20:32:10 · 1407 阅读 · 0 评论 -
线 性 回 归
感知机算法以及二分类的理论基础后学习了线性回归。如果是正常机器学习的流程当前学习进度:分类:输出离散回归:输出连续回归常被称为拟合。拟合出来是直线的就称为线性回归,如下图,因为拟合出来的是直线,所以被称为线性回归。线性回归的假设空间:与感知机的假设空间对比一下,发现他是少了阶跃(sign)函数。两者的经验误差都遵循经验误差最小原则。线性回归的经验误差是由最小二乘法(最小二乘法是线性回归的最佳线性无偏估计)求得:将数据集D中所有点与该直线的误差加起来,再进行算术平均就是该直线在数据原创 2021-12-13 17:52:23 · 914 阅读 · 0 评论 -
Anaconda Navigator打不开
1可能是因为你用虚拟环境的时候,无论是用pycharm还是spyder等编辑器对于不同库的要求是不一样的。我们切换环境导致spyder版本与下载包的版本不一致,建议:1用pip show 包名2卸载版本不匹配的包,重新安装何时版本的包pip Install 包==版本号2当你安pytorch,qyqt5等包时,一些基本的包会被覆盖翻新建议:上面的方法也可以解决这个问题...原创 2021-10-13 10:51:33 · 299 阅读 · 0 评论 -
super()函数的正确使用方法
class Base: def __init__(self, value): self.value = valueclass Two(Base): def __init__(self, value): super(Two, self).__init__(value) self.value += 3class One(Base): def __init__(self, value): super(One, se原创 2021-09-25 17:19:07 · 538 阅读 · 0 评论 -
转:super().__init__()详解
super().init()详解转载 2021-09-20 17:17:43 · 2594 阅读 · 0 评论