[15元]人体行为检测和识别毕业论文讲述

本文探讨了人体行为检测与识别技术,指出其在智能监控系统中的重要性和研究意义。研究内容包括人体检测、肤色判断、行为识别等。通过肤色检测判断目标是否为人体,然后进行背景差分法和阈值分割法提取人体目标,最后通过长宽比例进行行为识别。人脸特征和基于肤色的人脸检测也被讨论,强调了这些技术在实际应用中的挑战和价值。
摘要由CSDN通过智能技术生成

MATLAB人体行为检测与识别


目 录

第1章 绪论 2

1.1 研究背景 2

1.2 研究意义 3

1.3 研究内容 3

第2章 基于人脸检测的人体识别 4

2.1人脸特征 4

2.2 基于肤色的人脸检测 4

第3章 行为识别 8

3.1 灰度化 8

3.2背景差分法算法 9

3.3背景差阈值分割法 11

3.4通过长宽判断人体行为 11

3.4小结 14

参考文献 15

附录 部分关键源码及解释 16


第1章 绪论

1.1 研究背景

随着社会的发展,人民生活的提高,人们越来越关注安全问题,对视频监控系统的需求也爆发式扩张,如停车场,超市,银行,工厂,矿山等安全有监控设备,但监控系统不会主动实时监控。因为它们通常在相机发生后的异常,但只有在记录进行了观察和分析,以捕获存储的视频图像结果,然后知事实发生。因此迫切需要一种监视系统,它能够在24小时的连续实时监测,并且相机自动分析人类行为识别的有效的分析所捕获的图像数据。此外,当发生异常时,系统能够守护人员准确及时报警,从而避免犯罪和其他异常情况的发生。随着监控系统到位,以帮助人们甚至完成监控任务。可以减少人力和财力的投入,由于就业监视人员进行。另外,如果长时间不运动图像信息记录,保存几下,就失去了意义和视频监控系统的存储资源浪费存储空间。因此,传统的监视系统浪费了大量的人力,并有可能引起报警,性能差的实时监控的泄漏。监控等实时行为分析系统来识别人体,不仅可以替代监控人员的工作的一部分,提高监测系统的自动化水平,同时也提高监视存储的效率,还有一个广泛的应用,并在视频监视系统的潜在经济价值之前。由于人的行为具有自由的伟大程度,因为身体宽松长裙不同程度和它的外貌和从图像捕获设备位置不同距离的表现风格将是一个很大的分歧,这是人的行为分析,找出了一定的难度。但是,人类行为的实时分析,智能监控系统,以确定关键技术及其广阔的前景药,安全性,虚拟现实,军事和潜在的经济价值,国内外研究机构和学者越来越多的关注,并在许多全球领先的刊物和会议专题讨论。美国和欧洲都进行了一些相关的研究项目。 VSAM主要项目,如美国国防部高级研究计划局,成立于1997年(视觉监视和监测),主要是在视频为主的视频场景理解技术的战场和民用研究;IBM和微软等公司越来越多地将基于视觉的手势识别技术集成到其业务。 W4的实时可视化监控系统已经能够实现定位以及人体运动和跟踪能力的人的分割,并能检测一个人是否携带物体的简单动作等等;重大项目导师制欧盟委员会Framework5计划成立于1999年,主要是对人的行为和人机交互的研究,以开发用于公共安全,安全管理系统的工具; DARPA在2000年和资助长期的人类行为识别(识别人类在距离)项目,主要用于国防研究预防恐怖袭击和民间的多模态监测技术;雷丁大学,英国已经推出了理性的项目(稳健的方法进行监测和了解的人在公共场所),ETISE(视频场景理解评估),ISCAPS(拥挤区域治安综合监控),人类的主要研究行为在视觉图像识别和场景的理解;此外还有Pfinder(人发现者)系统,该系统可以执行人民和谅解的行为,以及项目AVITRACK(飞机周围,归类车辆和个人跟踪围裙的活动模型解释和检查)实时跟踪,是共同资助欧盟和奥地利的研究,该项目的重点是视频监控技术的研究。国内机构这方面的研究也有自动化研究所模式识别,微软亚洲研究院,感知,北京大学国家实验室,大学这方面的研究国家实验室有清华大学,浙江大学。虽然起步相对较晚的时间,而且还对关键技术进行深入研究人的视觉分析。人类的行为识别主要用于运动图像序列中含有人体的分析和处理,往往涉及的检测和清除运动目标检测,运动物体的阴影,特征提取和的四个过程识别人的行为的描述和分析的运动。在这里,我们从人的行为识别技术的研究现状,以及人的行为识别技术的热点和难点,讨论四个方面阐述。

1.2 研究意义

人体行为检测与识别技术除了在智能监控系统中具有有广泛的应用前景和潜力,在计算机视觉中是一个极具有吸引力及挑战性的问题。人体运动的视觉分析是一个新兴前沿的研究领域,涉及模式识别,图像处理,计算机视觉,人工智能等多门学科。它可以广泛应用于许多领域,如:运动捕捉,人机交互,监控和安全,环境控制和监测,体育及娱乐分析等,特别是在视频监控方面可广泛应用于银行、邮电、教育、交通、公安、监狱、法庭、大型公共设施、公共场所(银行、医院、停车场、商店、等公共场所甚至家庭庭院内)、大型仓库及军事基地等场所,在国防与公共安全领域起着日益重要的作用。综上所述,因此,人体动作的视觉分析具有极大的商业价值与现实意义。


1.3 研究内容

本文主要对人体行为检测和识别方法进行研究,主要研究内容如下:

(1)判断是否为人体

在目标提取之前,首先要对输入的图片进行检测。本文通过肤色检测判断目标是否为人体。

(2)人体目标提取

如果是人体导入背景图片与背景图片做差,再通过背景差阈值分割法进行提取。

(4)行为识别

在解决了以上的问题之后,接下来就是要选择一种合适的算法来进行人体姿态识别,这也是本文研究的重点和难点。本文采用一种人体目标的连通区域的长宽比例来对人体行为进行识别。



第2章 基于人脸检测的人体识别

2.1人脸特征

人脸是一个很常见的,非常复杂的区域具有很强的代表性,是人体生物特征最直接的表现,并与其他人的特点相比中包含的脸部的其他生物信息有以下几个特点:

(1)是最丰富的面部特征。

(2)应用非常方便,无需使用其他辅助设备。

(3)人脸特征是最熟悉的人性化特点,很容易被别人接受;

(4)人脸包含特征信息可直接用于使用,它不易被仿冒;

在人类的知识里面,人们对人的理解是最丰富的,人脸的结构非常清晰,从脸部和五官的位置之间的关系非常了解对方,人类已经没有什么困难判断一个给定的通过人脸检测或识别个人身份的图像是否具有正面是真的很难。另外,通过观察一个面的外部特征,它可以在很大程度上决定一个人的性别,表情,种族,身份和性格等直到与心理因素的某些内容。但是,自动检测与识别的脸是一个具有挑战性的经典研究,特别是要建立一个实用的系统,可全自动面部识别是非常困难的。主要的困难主要有以下几个方面:

(1)面部器官,形状,尺寸,颜色,质地和千变万化的面部表情,是很复杂的,很难形容一个统一的模式;

(2)人脸表面经常有一些配套的异物,如眼镜,胡须,耳环等;

(3)的复合物的实际应用中,如复杂的背景,光强,脸姿势如此不确定。

2.2 基于肤色的人脸检测

人脸非常重要的一个特性是肤色。研究表明:尽管不同种族、不同年龄、不同性别的人肤色看起来也会不相同,不同主要体现在亮度上面,根据亮度提取的色度空间里,不一样的肤色分布是具有聚类性的。在多种彩色空间里选取YCbCr彩色空间进行肤色的提取,是利用了肤色在色度空间里的聚类性

v2-1d68120757864b833ddd9877bb01becf_b.jpg

颜色空间颜色空间是定义、创建和观察颜色的方法。另外还有一些针对某些类型的图像应用通过统计或物理分析,由RGB线性或非线性导出的颜色空间,静态肤色模型目前常用的静态肤色建模方法有三种类型:辨别肤色范围、高斯密度函数的估计和直方图的统计,本文采用辨别肤色范围的方法。规定肤色范围用数学表达式明确规定肤色范围是一种简单的肤色建模方式,假设输入像素的颜色落入RCr=[140;170]和RCb=[80;120]限定的矩形区域,就认为是属于皮肤颜色像素。在不同的亮度分量y上的矩形区域(RCr,RCb)不同。这种简单的判断方式运行起来即快速又高效,特别是在实时系统中更具有可用的价值。

由统计表明不同种族的人类的皮肤颜色区别主要受亮度的影响,而受颜色的影响比较小,所以直接考虑YCbCr空间的CbCr分量,映射为CbCr空间,在CbCr空间下,受亮度变化的影响少,且是两维独立分布。通过实践,选取大量皮肤颜色样本进行统计,发现皮肤颜色在CbCr空间的分布呈现出良好的聚类特性。

统计分布满足:80Cb120

并且满足:140Cr170

不同人类的皮肤虽然相差很大,但在色度上的差异远远小于亮度上的差异,其实不同人的皮肤颜色在色彩上比较接近,但在亮度上的差异很大,在二维色度平面上,皮肤颜色的区域比较集中,可以用高斯分布描述。

其中每个像素的灰度对应该点与皮肤颜色的相似度,相似度的计算公式如下:

(2.21)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值