什么是德语中的情态动词

目标检测步骤

# pip install opencv-python
import cv2
import PIL
from PIL import Image
import numpy as np
import torch

## 预训练模型加载

yolov5_project_folder_path = r"F:\training\cv\yolov5"
model_path = r"F:\training\cv\yolov5\models\yolov5s.pt"
model = torch.hub.load(yolov5_project_folder_path, 'custom', source="local", path=model_path)


## 本地运行

- 数据筛选:提供的数据都可以被打标,主要是需要做筛选
    - 尽可能选择有代表性的数据
    - 同种场景选择2-3张即可
    - 不要出现误标(错误标注)和漏标(图像中有三个目标,只标注两个)的情况
    
- 安装 labelme 用于图像打标 (已经安装好)

    - pip install labelme

- 运行labelme

> labelme

从labelme 打标过后的数据,需要将json格式转换为yolov5能够使用的格式(txt):

yolo 格式: classes x_center y_center h w

1. **安装 labelme2yolo**

    ```bash
    pip install labelme2yolo
    ``` 

2. **转换标签格式**

    ```bash
    labelme2yolo --json_dir="json_dir" --val_size=0.1 --test_size=0.2 --output_format="bbox"
    ```

## 上传到服务器

## 模型训练

重要: 先安装数据打标环境,再安装yolov5的环境(安装过程中将torch的相关包屏蔽)

1. **将工作文件夹切换到 `yolov5`**


2. **模型训练 (train.py)**

    ```bash
    python3 .\train.py --weights path_to_yolov5.pt --cfg model.yaml --data dataset.yaml  --epochs 300 (至少设置为300) --batch-size -1 --workers 0
    ```

    python3 ./train.py --weights ./models/yolov5s.pt --cfg ./models/yolov5s.yaml --data ./data/dataset.yaml  --epochs 300 --batch-size -1 --workers 0

    适当多训练几次, epoch 大于300, 最好轻微的过拟合, 看训练指标中的MAP, 越高越好


3. **模型推理测试 (detect.py)**
      
    ```bash
    python .\detect.py --weights path_to_your_new_file.pt --source path_to_datasource --conf-thres 0.8 --view-img
    ```


4. **模型打包 (export.py)**

    - 转换为onnx

    ```bash
    python export.py --data dataset.yaml --weights path/to/your/best.pt --img 640 --batch 1 --device 0 or cpu --include onnx --half (添加half实现对模型的量化)
    ```
    or code:
    from models.experimental import attempt_load
	import torch
	model_path = r"path_to_your_pt_file"
	#加载模型权重
	model = attempt_load(model_path, device=torch.device("cuda"))
	#设置为评估模式
	model.eval()
	#准备一个示例输入, 因为需要确保输入的是
	# input_tensor = torch.randn(1,3,640,640)
	dummy_input = torch.randn(1, 3, 640, 640) 
	#导出模型
	torch.onnx.export(model,
	                  dummy_input,
	                  "yolov5_best.onnx",
	                  input_names = ['input'],  # the model's input names
	                  output_names = ['output'])



4. **指标打印 (val.py)**

    ```bash
    python3 val.py --data ./data/dataset.yaml --weights ./runs/train/exp/weights/best.pt
    ```


5. 部署ONNX - 参见其他guide

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值