目标检测步骤
# pip install opencv-python
import cv2
import PIL
from PIL import Image
import numpy as np
import torch
## 预训练模型加载
yolov5_project_folder_path = r"F:\training\cv\yolov5"
model_path = r"F:\training\cv\yolov5\models\yolov5s.pt"
model = torch.hub.load(yolov5_project_folder_path, 'custom', source="local", path=model_path)
## 本地运行
- 数据筛选:提供的数据都可以被打标,主要是需要做筛选
- 尽可能选择有代表性的数据
- 同种场景选择2-3张即可
- 不要出现误标(错误标注)和漏标(图像中有三个目标,只标注两个)的情况
- 安装 labelme 用于图像打标 (已经安装好)
- pip install labelme
- 运行labelme
> labelme
从labelme 打标过后的数据,需要将json格式转换为yolov5能够使用的格式(txt):
yolo 格式: classes x_center y_center h w
1. **安装 labelme2yolo**
```bash
pip install labelme2yolo
```
2. **转换标签格式**
```bash
labelme2yolo --json_dir="json_dir" --val_size=0.1 --test_size=0.2 --output_format="bbox"
```
## 上传到服务器
## 模型训练
重要: 先安装数据打标环境,再安装yolov5的环境(安装过程中将torch的相关包屏蔽)
1. **将工作文件夹切换到 `yolov5`**
2. **模型训练 (train.py)**
```bash
python3 .\train.py --weights path_to_yolov5.pt --cfg model.yaml --data dataset.yaml --epochs 300 (至少设置为300) --batch-size -1 --workers 0
```
python3 ./train.py --weights ./models/yolov5s.pt --cfg ./models/yolov5s.yaml --data ./data/dataset.yaml --epochs 300 --batch-size -1 --workers 0
适当多训练几次, epoch 大于300, 最好轻微的过拟合, 看训练指标中的MAP, 越高越好
3. **模型推理测试 (detect.py)**
```bash
python .\detect.py --weights path_to_your_new_file.pt --source path_to_datasource --conf-thres 0.8 --view-img
```
4. **模型打包 (export.py)**
- 转换为onnx
```bash
python export.py --data dataset.yaml --weights path/to/your/best.pt --img 640 --batch 1 --device 0 or cpu --include onnx --half (添加half实现对模型的量化)
```
or code:
from models.experimental import attempt_load
import torch
model_path = r"path_to_your_pt_file"
#加载模型权重
model = attempt_load(model_path, device=torch.device("cuda"))
#设置为评估模式
model.eval()
#准备一个示例输入, 因为需要确保输入的是
# input_tensor = torch.randn(1,3,640,640)
dummy_input = torch.randn(1, 3, 640, 640)
#导出模型
torch.onnx.export(model,
dummy_input,
"yolov5_best.onnx",
input_names = ['input'], # the model's input names
output_names = ['output'])
4. **指标打印 (val.py)**
```bash
python3 val.py --data ./data/dataset.yaml --weights ./runs/train/exp/weights/best.pt
```
5. 部署ONNX - 参见其他guide