1. 题目来源
链接:顺时针打印矩阵
来源:LeetCode——《剑指-Offer》专项
2. 题目说明
输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
示例 1:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,3,6,9,8,7,4,5]
示例 2:
输入:matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
输出:[1,2,3,4,8,12,11,10,9,5,6,7]
限制:
0 <= matrix.length <= 100
0 <= matrix[i].length <= 100
3. 题目解析
方法一:边界情况+循环结束判断+常规解法
这个问题拿到手题意还是很明确的,就一圈圈的往里缩就行了,每次缩一圈,行列相当于都减少二,那么循环条件就出来了,row - 2 * start > 0 && col - 2 * start > 0
在此就需要考虑下等于 0 的情况会不会出现就行了,这个很好判断,一个简单的逆向思维:如果等于 0 了,那再进入循环内部打印什么呢?所以等号不成立。
最中间的环可以是一个数字,也可以是一行或者一列。
相应还有一个注意点就是:我们将矩阵打印一圈的过程分为四步,这个矩阵的打印开始时,第一步都是从左到右打印的,而第一步是必不可少的。但是,如果只有一行的话,那就不需要第二步的从上到下打印了。同理下面的第三步、第四步都有如下相关约束:
- 第二步前提:终止行号大于起始行号
- 第三步前提:该圈矩阵至少有两行两列,也就是说,除了终止行号大于起始行号还要求终止列号大于起始列号
- 第四步前提:至少有三行两列,即终止行号比起始行号至少大 2,这个理解不了的想想田字格就行了
这一块的主要边界判断就是这三块,还是很细节的。这样的问题出来最好的方式一定是画图举例,才能做到多种情况不重不漏,先有一个大致的解决方案,再去思考下有什么巧妙的解法,体会做题的快乐。
参见代码如下:
// 执行用时 :12 ms, 在所有 C++ 提交中击败了82.41%的用户
// 内存消耗 :12.5 MB, 在所有 C++ 提交中击败了100.00%的用户
class Solution {
public:
vector<int> spiralOrder(vector<vector<int>>& matrix) {
vector<int> vt;
if (matrix.size() == 0 || matrix[0].size() == 0) return vt;
int row = matrix.size(), col = matrix[0].size(), start = 0;
while (col > start * 2 && row > start * 2) {
int endX = col - 1 - start;
int endY = row - 1 - start;
// 从左到右打印一行
for (int i = start; i <= endX; ++i)
vt.push_back(matrix[start][i]);
// 从上到下打印一列
if (start < endY) {
for (int i = start + 1; i <= endY; ++i)
vt.push_back(matrix[i][endX]);
}
// 从右到左打印一行
if (start < endX && start < endY) {
for (int i = endX - 1; i >= start; --i)
vt.push_back(matrix[endY][i]);
}
// 从下到上打印一行
if (start < endX && start < endY - 1)
for (int i = endY - 1; i >= start + 1; --i)
vt.push_back(matrix[i][start]);
++start;
}
return vt;
}
};
方法二:下标转化法
环数的计算公式是 m i n ( m , n ) 2 \frac{min(m, n)}{2} 2min(m,n),知道了环数,只要找到坐标关系,就可以对每个环的边按顺序打印。
- 定义
p,q
为当前环的高度和宽度,当p
或者q
为 1 时,表示最后一个环只有一行或者一列,可以跳出循环。
该做法的难点在于下标的转换,如何正确的转换下标是解决的关键,可以对照 3x3
的例子来完成下标的填写。
参见代码如下:
// 执行用时 :8 ms, 在所有 C++ 提交中击败了97.04%的用户
// 内存消耗 :12.5 MB, 在所有 C++ 提交中击败了100.00%的用户
class Solution {
public:
vector<int> spiralOrder(vector<vector<int> > &matrix) {
if (matrix.empty() || matrix[0].empty()) return {};
int m = matrix.size(), n = matrix[0].size();
vector<int> res;
int c = m > n ? (n + 1) / 2 : (m + 1) / 2;
int p = m, q = n;
for (int i = 0; i < c; ++i, p -= 2, q -= 2) {
for (int col = i; col < i + q; ++col)
res.push_back(matrix[i][col]);
for (int row = i + 1; row < i + p; ++row)
res.push_back(matrix[row][i + q - 1]);
if (p == 1 || q == 1) break;
for (int col = i + q - 2; col >= i; --col)
res.push_back(matrix[i + p - 1][col]);
for (int row = i + p - 2; row > i; --row)
res.push_back(matrix[row][i]);
}
return res;
}
};
方法三:迷宫遍历法
使用类似迷宫遍历的方法,这里只要设定正确的遍历策略,还是可以按螺旋的方式走完整个矩阵的,起点就是(0,0)
位置,但是方向数组一定要注意,不能随便写,开始时是要往右走,到了边界或者访问过的位置后,就往下,然后往左,再往上,所以 dirs
数组的顺序是 右->下->左->上
,由于原数组中不会有 -10000(在这只是草率的随意赋了一个值,不行的话就 bool
矩阵即可),所以就可以将访问过的位置标记为 -10000,这样再判断新位置的时候,只要其越界了,或者是遇到 -10000 了,就表明此时需要转弯了,到 dirs
数组中去取转向的 offset
,得到新位置,注意这里的 dirs
数组中取是按循环数组的方式来操作,加 1 然后对 4 取余,按照这种类似迷宫遍历的方法也可以螺旋遍历矩阵。
很直观的写法,也没那么多的公式推导在里面,但对边界情况把握的又相当到位,很值得细品、学习。
参见代码如下:
// 执行用时 :16 ms, 在所有 C++ 提交中击败了47.43%的用户
// 内存消耗 :12.5 MB, 在所有 C++ 提交中击败了100.00%的用户
class Solution {
public:
vector<int> spiralOrder(vector<vector<int>>& matrix) {
if (matrix.empty() || matrix[0].empty()) return {};
int m = matrix.size(), n = matrix[0].size(), idx = 0, i = 0, j = 0;
vector<int> res;
vector<vector<int>> dirs{{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
for (int k = 0; k < m * n; ++k) {
res.push_back(matrix[i][j]);
matrix[i][j] = -10000;
int x = i + dirs[idx][0], y = j + dirs[idx][1];
if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] == -10000) {
idx = (idx + 1) % 4;
x = i + dirs[idx][0];
y = j + dirs[idx][1];
}
i = x;
j = y;
}
return res;
}
};