1. 题目来源
链接:二叉搜索树的后序遍历序列
来源:LeetCode——《剑指-Offer》专项
2. 题目说明
输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果。如果是则返回 true
,否则返回 false
。假设输入的数组的任意两个数字都互不相同。
参考以下这颗二叉搜索树:
5
/ \
2 6
/ \
1 3
示例 1:
输入: [1,6,3,2,5]
输出: false
示例 2:
输入: [1,3,2,6,5]
输出: true
提示:
- 数组长度 <= 1000
3. 题目解析
方法一:递归+辅助栈,常规解法
- 确定根节点
root
- 遍历序列(除去
root
结点),找到第一个大于root
的位置,则该位置左边为左子树,右边为右子树 - 遍历右子树,若发现有小于
root
的值,则直接返回false
- 递归上述三个步骤,判断左子树和右子树是否仍是二叉搜索树
参见代码如下:
// 执行用时 :8 ms, 在所有 C++ 提交中击败了31.96%的用户
// 内存消耗 :9.4 MB, 在所有 C++ 提交中击败了100.00%的用户
class Solution {
public:
bool verifyPostorder(vector<int>& postorder) {
bool res = true;
if (postorder.empty())
return res;
res = help(postorder, 0, postorder.size() - 1);
return res;
}
bool help(vector<int>& postorder, int start, int end) {
if (postorder.empty() || start > end)
return true;
//根结点
int root = postorder[end];
//在二叉搜索树中左子树的结点小于根结点
int i = start;
for(;i<end;i++)
if (postorder[i] > root)
break;
//在二叉搜索书中右子树的结点大于根结点
for(int j = i;j<end;j++)
if (postorder[j] < root)
return false;
//判断左子树是不是二叉搜索树
bool left = true;
if (i>start) left = help(postorder,start,i-1);
//判断右子树是不是二叉搜索树
bool right = true;
if (i < end - 1) right = help(postorder, i,end-1);
return left && right;
}
};
方法二:辅助单调栈+逆向遍历数组
参照题解区大佬的解法:失火的夏天:单调递增栈辅助,逆向遍历数组
膜!
参见代码如下:
// 执行用时 :4 ms, 在所有 C++ 提交中击败了77.63%的用户
// 内存消耗 :9.4 MB, 在所有 C++ 提交中击败了100.00%的用户
class Solution {
public:
bool verifyPostorder(vector<int>& postorder) {
// 单调栈使用,单调递增的单调栈
stack<int> stack;
int pervElem = INT_MAX;
// 逆向遍历,就是翻转的先序遍历
for (int i = postorder.size() - 1; i >= 0; --i){
// 左子树元素必须要小于递增栈顶的元素,否则就不是二叉搜索树
if (postorder[i] > pervElem){
return false;
}
while (!stack.empty() && postorder[i] < stack.top()){
// 数组元素小于单调栈的元素了,表示往左子树走了,记录下上个根节点
// 找到这个左子树对应的根节点,之前右子树全部弹出,不再记录,因为不可能在往根节点的右子树走了
pervElem = stack.top();
stack.pop();
}
// 这个新元素入栈
stack.push(postorder[i]);
}
return true;
}
};