文章目录
1. dfs + n 皇后
经典 dfs
问题,n
皇后问题,一般有两种解法:
- 按元素枚举,因为共 n 2 n^2 n2 个位置,每个位置两种情况,放和不放,则总共的时间复杂度为 O ( 2 n 2 ) O(2^{n^2}) O(2n2)
- 按行枚举:主要记录对角线
d
g
[
u
+
i
]
dg[u+i]
dg[u+i],反对角线
u
d
g
[
n
−
u
+
i
]
udg[n−u+i]
udg[n−u+i] 数组,数组中的下标
u
+
i
u+i
u+i 和
n
−
u
+
i
n−u+i
n−u+i 表示的是截距,就是将整个棋盘放到平面直角坐标系上了,针对每个棋盘内元素,查看它的对角线是否已经有了元素,一条对角线中的所有元素有相同的截距,针对截距的不同也就可以唯一确定一条对角线了,就是个简单的一次函数求截距的映射,时间复杂度
O
(
n
!
)
O(n!)
O(n!):
- 下面的
(
x
,
y
)
(x,y)
(x,y) 相当于
(
u
,
i
)
(u,i)
(u,i)
反对角线 y = x + b y=x+b y=x+b, 截距 b = y − x b=y−x b=y−x,因为我们要把 b b b 当做数组下标,则 b b b 不能为负,所以 + n +n +n ,保证是截距为正 - 而对角线 y = − x + b y=−x+b y=−x+b , 截距是 b = y + x b=y+x b=y+x,这里截距一定是正的,所以不需要加偏移量
- 下面的
(
x
,
y
)
(x,y)
(x,y) 相当于
(
u
,
i
)
(u,i)
(u,i)
注意:
- 在此由于反对角线加了偏移量
n
,且x=n && y=n
,x + y == 2n
,故使用截距映射对角线的话,最坏情况下是需要两倍空间的。 - 针对按元素枚举,判断程序出口时需要注意,当
x==n
时,就是程序的出口了,当x == n && s == n
才要打印皇后。故一定需要给程序一个明确的出口!
常见出口错误:
// x==n 但是 s!=n 时,程序继续执行,则死循环
if (x == n && s == n) {
for (int i = 0; i < n; i ++ ) puts(g[i]);
puts("");
return ;
}
// 同理
if (x == n) { // 当行超过行边界时,说明枚举完了
if (s == n) { // 当皇后数量恰好为n时,即摆放完毕。小于n有很多情况,大于n没有合法情况
for (int i = 0; i < n; ++i) puts(g[i]);
puts("");
return ; // 这个 return 可以忽略
}
// return ; // 漏掉了这个 return ;
}
按元素枚举代码
#include <iostream>
using namespace std;
const int N = 20;
int n;
char g[N][N];
bool row[N], col[N], dg[N], udg[N]; // 行、列、正对角线、反对角线
// 按元素枚举
void dfs(int x, int y, int s) {
if (y == n) y = 0, x ++; // 当 y 超过列边界时,说明走到下一行了
if (x == n) { // 当行超过行边界时,说明枚举完了
if (s == n) { // 当皇后数量恰好为n时,即摆放完毕。小于n有很多情况,大于n没有合法情况
for (int i = 0; i < n; ++i) puts(g[i]);
puts("");
return ; // 这个 return 可以忽略
}
// 不能将这个 return 写在上面,否则程序没有出口,不放皇后的话就死循环,内存爆炸。
return ;
}
// 不放皇后。上下顺序无所谓
dfs(x, y + 1, s);
// 放皇后
if (!row[x] && !col[y] && !dg[x + y] && !udg[x - y + n]) {
g[x][y] = 'Q';
row[x] = col[y] = dg[x + y] = udg[x - y + n] = true;
dfs(x, y + 1, s + 1);
row[x] = col[y] = dg[x + y] = udg[x - y + n] = false;
g[x][y] = '.';
}
}
int main() {
cin >> n;
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
g[i][j] = '.';
dfs(0, 0, 0); // 左上角开始搜,记录现在有多少皇后
return 0;
}
按行枚举代码:
#include <iostream>
using namespace std;
const int N = 20;
int n;
char g[N][N];
bool col[N], dg[N], udg[N]; // 列、正对角线、反对角线
// 按行枚举每一列可以放的皇后位置
void dfs(int u) {
if (u == n) {
for (int i = 0; i < n; ++i) puts(g[i]);
puts("");
return ;
}
// 枚举当前行的所有列
for (int i = 0; i < n; ++i) {
if (!col[i] && !dg[u + i] && !udg[n - u + i]) { // udg[u-i+n] udg[i-u+n] 均可
g[u][i] = 'Q';
col[i] = dg[u + i] = udg[n - u + i] = true;
dfs(u + 1); // 递归下一行
col[i] = dg[u + i] = udg[n - u + i] = false;
g[u][i] = '.';
}
}
}
int main() {
cin >> n;
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
g[i][j] = '.';
dfs(0);
return 0;
}