[数论+素数判定] 试除法判定质数(基础+边界问题+代码风格)

1. 试除法+代码风格

866. 试除法判定质数

在这里插入图片描述
质数定义: 质数是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。

试除法判定质数思路:

  • 最基础:从 2 ~ n - 1 依次枚举查看能否整除,即存在了其它因子,则不为素数。时间复杂度 O ( n ) O(n) O(n)
  • 算法优化:因子总是成对出现,则只需要枚举到 n \sqrt n n 即可。时间复杂度为 O ( n ) O(\sqrt n) O(n )
  • 代码优化:不要使用 i < = s q r t ( n ) i <= sqrt(n) i<=sqrt(n),因为 s q r t ( ) sqrt() sqrt() 函数很慢。也不要使用 i ∗ i < = n i * i <= n ii<=n 因为可能存在 ( i + 1 ) ∗ ( i + 1 ) (i+1)*(i+1) (i+1)(i+1) 刚好越界,那么直接成负数进行死循环了。优秀的写法应该为 i < = n / i i <= n/ i i<=n/i

基础代码:

bool is_prime(int n) {
    if (n < 2) return false;
    for (int i = 2; i < n; ++i) 
        if (n % i == 0) 
            return false;
    
    return true;
}

代码优化:

#include <iostream>
#include <algorithm>

using namespace std;

int m;

bool is_prime(int n) {
    if (n < 2) return false;
    for (int i = 2; i <= n / i; ++i) 
        if (n % i == 0) 
            return false;
    
    return true;
}

int main() {
    cin >> m;
    while (m --) {
        int n;
        cin >> n;
    
        if (is_prime(n)) puts("Yes");
        else puts("No");
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值