1. 题目来源
题单:
-
- 二分算法(二分答案/最小化最大值/最大化最小值/第K小)
- 二分查找
2. 题目解析
这么经典的问题,堪称整数二分必刷入门题!!!
写好了吧 hh
经过前人整理,关于整数二分已经有了三种写法。可以去看看灵神的视频再学习下吧。目前使用 y 总的这个写法也没啥毛病,用的比较顺。
时间复杂度:
O
(
l
o
g
n
)
O(logn)
O(logn)
空间复杂度:
O
(
1
)
O(1)
O(1)
代码:
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
if (nums.empty()) return { -1, -1 };
int l = 0, r = nums.size() - 1;
while (l < r) {
int mid = l + r >> 1;
if (nums[mid] >= target) r = mid;
else l = mid + 1;
}
if (nums[l] != target) return { -1, -1 };
int L = 0, R = nums.size() - 1;
while (L < R) {
int mid = L + R + 1 >> 1;
if (nums[mid] <= target) L = mid;
else R = mid - 1;
}
return { l, R };
}
};
库函数的灵活运用:
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
int l = lower_bound(nums.begin(), nums.end(), target) - nums.begin();
int r = upper_bound(nums.begin(), nums.end(), target) - nums.begin() - 1;
int n = nums.size();
// if (l < n && nums[l] == target && 0 <= r && r < n && nums[r] == target) return {l, r};
if (l < n && nums[l] == target) return {l, r};
return {-1, -1};
}
};