[H贪心] lc45. 跳跃游戏 II(dp+贪心+思维)

1. 题目来源

链接:45. 跳跃游戏 II

2. 题目解析

很经典的一道贪心问题。其实不难猜到贪心思路,但是从 dp 角度层层递进,找到单调性,优化成状态计算过程,变成贪心也是一个很奇妙的旅程。

dp 可以定义为从 i 点到终点的最短路,只需要倒着推一遍就能得到结果。但是显然需要枚举每个点,和每个点前面的所有状态,那么就是 O ( n 2 ) O(n^2) O(n2) 的时间复杂度了,很容易超时。

基于 dp 的思想和人的常理,能推断得到 f 数组中的值是随着 i 的递增而单调递增的。可以将其想象为 0,1,1,2,2,3,4,4,... 这样一个递增数组,且每次只递增一。因为 i 是连续的,所以不可能存在跳步的情况即 f[3]=3f[4]=5 这个显然是不合理的。

那么基于 f 数组单调递增,且每次只会增加 1 步这个结论。我们就可以顺序枚举所有的 i 点,同时顺序枚举 i 点的起跳点 j 点,有点双指针的意思,若 j+nums[j] < i 说明从 j 点是无法跳到 i 点的,那么让 j ++ 向后移动。如果 j+nums[j]>=i 说明从 j 点是可以跳到 i 点的,由于 f 数组的单调递增性,j 以后的点不可能再比当前 j 点步数再小,那么就可以直接使用 f[j] 来更新 f[i],即 f[i] = f[i] + 1。最后返回 f[n- 1] 即可。在这里插入图片描述

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

代码:

class Solution {
public:
    int jump(vector<int>& nums) {
        int n = nums.size();
        vector<int> f(n);

        for (int i = 1, j = 0; i < n; i ++ ) {
            while (j + nums[j] < i) j ++;
            f[i] = f[j] + 1;
        }
        return f[n - 1];
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值