1. 题目来源
链接:45. 跳跃游戏 II
2. 题目解析
很经典的一道贪心问题。其实不难猜到贪心思路,但是从 dp
角度层层递进,找到单调性,优化成状态计算过程,变成贪心也是一个很奇妙的旅程。
dp
可以定义为从 i
点到终点的最短路,只需要倒着推一遍就能得到结果。但是显然需要枚举每个点,和每个点前面的所有状态,那么就是
O
(
n
2
)
O(n^2)
O(n2) 的时间复杂度了,很容易超时。
基于 dp
的思想和人的常理,能推断得到 f
数组中的值是随着 i
的递增而单调递增的。可以将其想象为 0,1,1,2,2,3,4,4,...
这样一个递增数组,且每次只递增一。因为 i
是连续的,所以不可能存在跳步的情况即 f[3]=3
,f[4]=5
这个显然是不合理的。
那么基于 f
数组单调递增,且每次只会增加 1 步这个结论。我们就可以顺序枚举所有的 i
点,同时顺序枚举 i
点的起跳点 j
点,有点双指针的意思,若 j+nums[j] < i
说明从 j
点是无法跳到 i
点的,那么让 j ++
向后移动。如果 j+nums[j]>=i
说明从 j
点是可以跳到 i
点的,由于 f
数组的单调递增性,j
以后的点不可能再比当前 j
点步数再小,那么就可以直接使用 f[j]
来更新 f[i]
,即 f[i] = f[i] + 1
。最后返回 f[n- 1]
即可。
时间复杂度:
O
(
n
)
O(n)
O(n)
空间复杂度:
O
(
n
)
O(n)
O(n)
代码:
class Solution {
public:
int jump(vector<int>& nums) {
int n = nums.size();
vector<int> f(n);
for (int i = 1, j = 0; i < n; i ++ ) {
while (j + nums[j] < i) j ++;
f[i] = f[j] + 1;
}
return f[n - 1];
}
};