[H数学] lc810. 黑板异或游戏(数学+博弈论+思维)

1. 题目来源

链接:810. 黑板异或游戏

相关题目:[博弈论] Nim游戏及SG函数(经典+台阶+集合+拆分)

官方题解写的挺不错的,可以看看。

2. 题目解析

数学题,思维题,博弈论。

相较于 Nim 游戏来讲,这个还是比较简单的题目了。

结论比较难猜。博弈论两个关键概念,必胜态、必败态。我们记数组所有元素异或和为 S,数组长度为 n

  • 必胜态:S 为 0,或者 n 为偶数。
  • 必败态:S 不为 0,且 n 为奇数。

简单数学归纳法即可证明:

  • n=0 时,异或和为 0,当前一定必胜,成立。
  • 假设当 k<n 时,成立。考虑 k=n 时,是否成立。
    • k 为奇数时,不论怎么取石子,取完一定为偶数,走向必胜态,故当前为必败态。
    • k 为偶数时:
      • S=0,即根据游戏规则,已经胜利了。
      • S!=0,仅需证明至少存在一种拿法,使得拿完之后局面转为必败态,即总个数为奇数且 S!=0。总个数为奇数显然成立,考虑反证法,设当前 S=x1^x2^...^xn,当前 S != 0,若不存在一种拿法,则对应任意拿法,拿任意一个数后剩余数的异或和均为 0。从 S 中拿 xi 等价于 S^xi=0,即 S=xi,针对所有 x 均成立。则有 S=x1=x2=x3=...=xn=0,则矛盾。故反证不成立,即至少存在一种拿法,使得拿完之后异或值不为 0,且个数必然为奇数,为必败态。

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

代码:

class Solution {
public:
    bool xorGame(vector<int>& nums) {
        int n = nums.size();
        if ((n & 1) == 0) return true;	// 注意优先级,== 高于 & ^ |,低于移位运算符
        int cur = 0;
        for (auto e : nums) cur ^= e;
        return cur == 0;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值