[二分答案] aw3578. 最大中位数(二分答案+边界处理+aw周赛001_2)

本文介绍了一种使用二分查找算法来求解在不超过k次操作下,使数组中位数最大的策略。核心思路是在每次二分过程中判断当前中位数是否能在给定操作次数内实现,通过维护操作计数判断条件。注意处理边界情况,如整数溢出和操作次数的限制。最终的时间复杂度为O(nlogn),空间复杂度为O(n)。
摘要由CSDN通过智能技术生成

1. 题目来源

链接:3578. 最大中位数

2. 题目解析

二分答案。但是我貌似每次都看不出来。

首先本题是要求一个答案中位数。其次,中位数要尽量大。中位数显然不能取特别大,有条件限制,给定一个可能中位数 x 的时候,我们只需要判断后半段能否在 k 次内变到 x 即可。这个 O ( n ) O(n) O(n) 即可进行判断。

故二分答案是 O ( l o g n ) O(logn) O(logn),判断 O ( n ) O(n) O(n)

细节:

  • 注意本题计算 mid 时需要开 long long,中间计算过程会爆 int。当 n=1 a[0]=1e9 k=1e9 时,中位数可以到 2e9,计算 mid 时将爆 int
  • 本题要求小于等于 k 操作次数均可,注意 check() 的条件判断。一开始写成了 cnt > kr=mid 更新过来,这是错误的。cnt > k 意味着当前 mid 是不能做中位数的,应该更新为 r=mid-1,一定注意!

时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)

空间复杂度: O ( n ) O(n) O(n)


#include <bits/stdc++.h>

using namespace std;

const int N = 2e5 + 5;

int n, k;
int a[N];

bool check(int mid) {
    long long cnt = 0;                  // 在这要开 long long 记录
    for (int i = n >> 1; i < n; i ++ ) 
        if (a[i] < mid)
            cnt += mid - a[i];
    
    return cnt <= k;
}

int main() {
    scanf("%d%d", &n, &k);
    for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);
    sort(a, a + n);
    
    int l = 0, r = 2e9;
    while (l < r) {
        int mid = 1ll + l + r >> 1;         // 在这中间过程转 long long
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    
    printf("%d\n", l);
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值