[Mdp] lc1937. 扣分后的最大得分(dp优化+前后缀优化+周赛250_3)

本文介绍了如何使用动态规划和前缀和优化技术解决一道算法题,题目要求在给定的数据范围内找到扣分后的最大得分。通过分析题目,发现朴素的动态规划解法会超时,于是采用优化策略,利用前缀和维护最大值,在O(nm)的时间复杂度和空间复杂度内求解。代码实现中展示了具体的优化过程。
摘要由CSDN通过智能技术生成

1. 题目来源

链接:1937. 扣分后的最大得分

前导题:[M前缀和] lc1014. 最佳观光组合(思维+前缀和+算法优化)

2. 题目解析

数据范围 1e5,并注意到 m*n1e5,朴素的 dp 必然超时。

朴素 dp,三重循环直接暴力进行状态转移,显然是错误的。需要进行 dp 优化,看这情况也只能优化状态转移部分。

参考:灵茶山艾府:DP 优化技巧:拆项+前后缀最大值

基本上就是这个优化思路,配合前导题 [M前缀和] lc1014. 最佳观光组合(思维+前缀和+算法优化) 做就行了。就是要在 O ( 1 ) O(1) O(1) 的时间完成状态转移。直接拿两个变量来维护前缀、后缀最大值就行了。也可以直接优化到一维去,因为本层状态仅与上层有关。

等一手官方题解吧。


时间复杂度: O ( n m ) O(nm) O(nm)

空间复杂度: O ( n m ) O(nm) O(nm)


class Solution {
public:
    long long maxPoints(vector<vector<int>>& points) {
        typedef long long LL;
        int n = points.size(), m = points[0].size();
        vector<vector<LL>> f(n, vector<LL>(m));
        for (int i = 0; i < m; i ++ ) f[0][i] = points[0][i];
        for (int i = 1; i < n; i ++ ) {
            LL L = -1e9, R = -1e9;
            for (int j = 0; j < m; j ++ ) {
                L = max(L, f[i - 1][j] + j);
                f[i][j] = max(f[i][j], 0ll + points[i][j] - j + L);
            }

            for (int j = m - 1; ~j; j -- ) {
                R = max(R, f[i - 1][j] - j);
                f[i][j] = max(f[i][j], 0ll + points[i][j] + j + R);
            }
        }

        LL res = -1e9;
        for (int i = 0; i < m; i ++ ) res = max(res, f[n - 1][i]);

        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ypuyu

如果帮助到你,可以请作者喝水~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值