1. 题目来源
2. 题目解析
这个问题蛮有意思的,比较考验代码能力。还存在一个思维误区。
为什么不能用并查集?
- 本题是有向图的关系,如:0 引爆 1, 0 引爆 2, 1和2不能互相引爆。那么用了并查集,则将 0,1,2 归结到同一个集合中,计算集合元素将出错。
BFS 思路:
- 将所有的炸弹两两进行判断,如果 a 能引爆 b,则需要加一条有向边 a->b。建出一个有向图。
- 枚举炸弹,
i
,在有向图中 bfs 搜索i
能引爆的其他炸弹,将它加入队列,统计次数即可。 - 注意为了不重复遍历,需要开辟 visited 数组进行判重。也是 BFS 常规操作。
坑点:
- 计算时会爆 int,记得开 LL。
这个问题蛮有意思的,bfs 即可,关键是建图这个思维转换能力。后续的处理操作就是一个 bfs 模板,bfs 操作和引爆炸弹的实际过程是一样的,在输出路径上有更大优势。当然 dfs 也可以处理,代码见下方即可。
- 时间复杂度: O ( n 3 ) O(n^3) O(n3)
- 空间复杂度: O ( n 2 ) O(n^2) O(n2)
class Solution {
public:
typedef long long LL;
bool check(LL x1, LL y1, LL r1, LL x2, LL y2, LL r2) {
return ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)) <= r1 * r1;
}
int maximumDetonation(vector<vector<int>>& bombs) {
int n = bombs.size();
vector<vector<int>> edges(n);
for (int i = 0; i < n; i ++ ) {
int x1 = bombs[i][0], y1 = bombs[i][1], r1 = bombs[i][2];
for (int j = 0; j < n; j ++ ) {
if (i == j) continue;
int x2 = bombs[j][0], y2 = bombs[j][1], r2 = bombs[j][2];
if (check(x1, y1, r1, x2, y2, r2)) {
edges[i].push_back(j);
}
}
}
int res = 0;
for (int i = 0; i < n; i ++ ) {
vector<int> visisted(n);
int cnt = 1;
queue<int> q; q.push(i);
visisted[i] = 1;
while (q.size()) {
int cur = q.front(); q.pop();
for (int ne : edges[cur]) {
if (visisted[ne]) continue;
cnt ++ ;
q.push(ne);
visisted[ne] = 1;
}
}
res = max(res, cnt);
}
return res;
}
};
dfs:
class Solution {
public:
typedef long long LL;
bool check(LL x1, LL y1, LL r1, LL x2, LL y2, LL r2) {
return ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)) <= r1 * r1;
}
int dfs(vector<vector<int>> &g, vector<int> &vis, int x) {
vis[x] = true;
int cnt = 1;
for (int y : g[x]) {
if (vis[y]) continue;
cnt += dfs(g, vis, y);
}
return cnt;
}
int maximumDetonation(vector<vector<int>>& bombs) {
int n = bombs.size();
vector<vector<int>> edges(n);
for (int i = 0; i < n; i ++ ) {
int x1 = bombs[i][0], y1 = bombs[i][1], r1 = bombs[i][2];
for (int j = 0; j < n; j ++ ) {
if (i == j) continue;
int x2 = bombs[j][0], y2 = bombs[j][1], r2 = bombs[j][2];
if (check(x1, y1, r1, x2, y2, r2)) {
edges[i].push_back(j);
}
}
}
int res = 0;
for (int i = 0; i < n; i ++ ) {
vector<int> vis(n);
res = max(res, dfs(edges, vis, i));
}
return res;
}
};