二叉树排序的增删

1,二叉树排序使用链表链接生成的 主要在排序的过程需要进行判断让他在添加的时候有自己的方法 可以让他查找的时候比一般的链表链接快再添加的时候比数组也快
2,弊端是他的根节点是一开始就生成的 所以左右节点的wpl相差特别大 导致查找会比普通单链表还慢(因为他会每次递归都会判断有没有左右节点带去递归)这是就会出现平衡二叉树 会在下张博客写出
3,开始撸代码

//首先还是要有个节点 二叉树有左右节点和自己的值
class Node {
	int value;
	Node left;
	Node right;

	public Node(int value) {
		this.value = value;
	}
	//寻找当前值的节点对比如果相同返回当前节点
	//小于当前值先判断有没有左节点左递归
	//大于当前值先判断有没有右节点右递归
	public Node search(int value) {
		if (value == this.value) {
			return this;
		} else if (value < this.value) {
			if (this.left == null) {
				return null;
			}
			return this.left.search(value);
		} else {
			if (this.right == null) {
				return null;
			}
			return this.right.search(value);
		}
	}
	//要查找当前值的父节点每次都要判断当前节点的左右节点
	//并且保证需要判断的节点是否有值一样返回当前值 小左递归 大右递归
	public Node searchParent(int value) {
		if (this.left != null && this.left.value == value || this.right != null && this.right.value == value) {
			return this;
		} else {
			if (value < this.value && this.left != null) {
				return this.left.searchParent(value);
			} else if (value >= this.value && this.right != null) {
				return this.right.searchParent(value);
			} else {
				return null;
			}
		}
	}

	@Override
	public String toString() {
		return "Node [value=" + value + "]";
	}
//添加节点 
	public void add(Node node) {
		if (node == null) {
			return;//判断不为空就添加
		}
		//判断输入进来的节点比当前节点小就去判断他的左节点存在
		//不存在给左节点添加值如果存在再去左递归去判断
		if (node.value < this.value) {

			if (this.left == null) {
				this.left = node;
			} else {
				this.left.add(node);
			}
		//判断输入进来的节点比当前节点大就去判断他的左节点存在
		//不存在给左节点添加值如果存在再去右递归去判断
		} else if (node.value > this.value) {
			if (this.right == null) {
				this.right = node;
			} else {
				this.right.add(node);
			}
		}
	}
	//中序遍历
	public void infixOrder() {
		if (this.left != null) {
			this.left.infixOrder();
		}
		System.out.println(this);
		if (this.right != null) {
			this.right.infixOrder();
		}
	}
}
class BinarySortTree {
	private Node root;

	public Node getRoot() {
		return root;
	}

	public Node search(int value) {
		if (root == null) {
			return null;
		} else {
			return root.search(value);
		}
	}

	public Node searchParent(int value) {
		if (root == null) {
			return null;
		} else {
			return root.searchParent(value);
		}
	}

	public int delRightTreeMin(Node node) {
		Node target = node;
		while (target.left != null) {
			target = target.left;
		}
		delNode(target.value);
		return target.value;
	}
//各种判断 简单来讲3部分
//1,是叶子节点就在父子节点的左右节点中删除
//2,非叶子节点有一个子节点就把子节点往上移动
//3,非叶子节点有两个节点就左递归寻找最大值和要删除的节点互换
	public void delNode(int value) {
		if (root == null) {
			return;
		} else {
			Node targetNode = search(value);
			if (targetNode == null) {
				return;
			}
			if (root.left == null && root.right == null) {
				root = null;
				return;
			}
			Node parent = searchParent(value);
			if (targetNode.left == null && targetNode.right == null) {
				if (parent.left != null && parent.left.value == targetNode.value) {
					parent.left = null;
				} else if (parent.right != null && parent.right.value == targetNode.value) {
					parent.right = null;
				}
			} else if (targetNode.left != null && targetNode.right != null) {
				int minVal = delRightTreeMin(targetNode.right);
				targetNode.value = minVal;

			} else {
				if (targetNode.left != null) {
					if (parent != null) {
						if (parent.left.value == value) {
							parent.left = targetNode.left;
						} else {
							parent.right = targetNode.left;
						}
					} else {
						root = targetNode.left;
					}
				} else {
					if (parent != null) {
						if (parent.left.value == value) {
							parent.left = targetNode.right;
						} else {
							parent.right = targetNode.right;
						}
					}else {
						root=targetNode.right;
					}
				}
			}

		}
	}
	//如果根节点为空就给他赋值如果不为空就调用add方法
	public void add(Node node) {
		if (root == null) {
			root = node;
		} else {
			root.add(node);
		}
	}

	public void infixOrder() {
		if (root != null) {
			root.infixOrder();
		} else {
			System.out.println("空");
		}
	}
}

ps:疫情下速度的看了算法和数据结构,很多看懂了老忘就想写博客 看到一多半开始写的刚开始基情满满,越来越写不下去了把重点写下让自己明白明白 ,还有再看195个的视频 看到135个了 现在越来越不想看 但是希望疫情结束之前看完奥利给

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值