1,二叉树排序使用链表链接生成的 主要在排序的过程需要进行判断让他在添加的时候有自己的方法 可以让他查找的时候比一般的链表链接快再添加的时候比数组也快
2,弊端是他的根节点是一开始就生成的 所以左右节点的wpl相差特别大 导致查找会比普通单链表还慢(因为他会每次递归都会判断有没有左右节点带去递归)这是就会出现平衡二叉树 会在下张博客写出
3,开始撸代码
//首先还是要有个节点 二叉树有左右节点和自己的值
class Node {
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
//寻找当前值的节点对比如果相同返回当前节点
//小于当前值先判断有没有左节点左递归
//大于当前值先判断有没有右节点右递归
public Node search(int value) {
if (value == this.value) {
return this;
} else if (value < this.value) {
if (this.left == null) {
return null;
}
return this.left.search(value);
} else {
if (this.right == null) {
return null;
}
return this.right.search(value);
}
}
//要查找当前值的父节点每次都要判断当前节点的左右节点
//并且保证需要判断的节点是否有值一样返回当前值 小左递归 大右递归
public Node searchParent(int value) {
if (this.left != null && this.left.value == value || this.right != null && this.right.value == value) {
return this;
} else {
if (value < this.value && this.left != null) {
return this.left.searchParent(value);
} else if (value >= this.value && this.right != null) {
return this.right.searchParent(value);
} else {
return null;
}
}
}
@Override
public String toString() {
return "Node [value=" + value + "]";
}
//添加节点
public void add(Node node) {
if (node == null) {
return;//判断不为空就添加
}
//判断输入进来的节点比当前节点小就去判断他的左节点存在
//不存在给左节点添加值如果存在再去左递归去判断
if (node.value < this.value) {
if (this.left == null) {
this.left = node;
} else {
this.left.add(node);
}
//判断输入进来的节点比当前节点大就去判断他的左节点存在
//不存在给左节点添加值如果存在再去右递归去判断
} else if (node.value > this.value) {
if (this.right == null) {
this.right = node;
} else {
this.right.add(node);
}
}
}
//中序遍历
public void infixOrder() {
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.infixOrder();
}
}
}
class BinarySortTree {
private Node root;
public Node getRoot() {
return root;
}
public Node search(int value) {
if (root == null) {
return null;
} else {
return root.search(value);
}
}
public Node searchParent(int value) {
if (root == null) {
return null;
} else {
return root.searchParent(value);
}
}
public int delRightTreeMin(Node node) {
Node target = node;
while (target.left != null) {
target = target.left;
}
delNode(target.value);
return target.value;
}
//各种判断 简单来讲3部分
//1,是叶子节点就在父子节点的左右节点中删除
//2,非叶子节点有一个子节点就把子节点往上移动
//3,非叶子节点有两个节点就左递归寻找最大值和要删除的节点互换
public void delNode(int value) {
if (root == null) {
return;
} else {
Node targetNode = search(value);
if (targetNode == null) {
return;
}
if (root.left == null && root.right == null) {
root = null;
return;
}
Node parent = searchParent(value);
if (targetNode.left == null && targetNode.right == null) {
if (parent.left != null && parent.left.value == targetNode.value) {
parent.left = null;
} else if (parent.right != null && parent.right.value == targetNode.value) {
parent.right = null;
}
} else if (targetNode.left != null && targetNode.right != null) {
int minVal = delRightTreeMin(targetNode.right);
targetNode.value = minVal;
} else {
if (targetNode.left != null) {
if (parent != null) {
if (parent.left.value == value) {
parent.left = targetNode.left;
} else {
parent.right = targetNode.left;
}
} else {
root = targetNode.left;
}
} else {
if (parent != null) {
if (parent.left.value == value) {
parent.left = targetNode.right;
} else {
parent.right = targetNode.right;
}
}else {
root=targetNode.right;
}
}
}
}
}
//如果根节点为空就给他赋值如果不为空就调用add方法
public void add(Node node) {
if (root == null) {
root = node;
} else {
root.add(node);
}
}
public void infixOrder() {
if (root != null) {
root.infixOrder();
} else {
System.out.println("空");
}
}
}
ps:疫情下速度的看了算法和数据结构,很多看懂了老忘就想写博客 看到一多半开始写的刚开始基情满满,越来越写不下去了把重点写下让自己明白明白 ,还有再看195个的视频 看到135个了 现在越来越不想看 但是希望疫情结束之前看完奥利给