[2007CQOI]余数求和——除法分块

题目大意

给出正整数n和k,计算 G(n,k)=k mod 1+k mod 2+k mod 3++k mod n G ( n , k ) = k   m o d   1 + k   m o d   2 + k   m o d   3 + … + k   m o d   n 的值,其中k mod i表示k除以i的余数。例如
G(10,5)=5 mod 1+5 mod 2+5 mod 3+5 mod 4+5 mod 5+5 mod 10=0+1+2+1+0+5+5+5+5+5=29 G ( 10 , 5 ) = 5   m o d   1 + 5   m o d   2 + 5   m o d   3 + 5   m o d   4 + 5   m o d   5 … … + 5   m o d   10 = 0 + 1 + 2 + 1 + 0 + 5 + 5 + 5 + 5 + 5 = 29
题目的描述十分清楚,注意到 G(n,k) G ( n , k ) 可以化简为 ni=1k mod i ∑ i = 1 n k   m o d   i
因为取模的性质,所以可以继续化简

i=1nkiki=nki=1niki ∑ i = 1 n k − i ∗ ⌊ k i ⌋ = n ∗ k − ∑ i = 1 n i ∗ ⌊ k i ⌋

前面一部分的值是可以直接算出来的,我们把后面一部分的表给打出来,就会发现一个规律,就是其中有相当一部分的连续的i的 ki ⌊ k i ⌋ 是相同的,那么我们便可以将每一部分相同的 iki i ∗ ⌊ k i ⌋ ki ⌊ k i ⌋ 给提取公因式,就会变成了 ki(i+i+1+i+2+...kki) ⌊ k i ⌋ ∗ ( i + i + 1 + i + 2 + . . . k ⌊ k i ⌋ ) ,这就是所谓的除法分块了。最后的时间复杂是O( n n );
由于n可能大于k,所以在i大于k的时候要加一个判断,具体的代码如下

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#define REP(i,a,b) for(register int i=a;i<=b;++i)
#define DREP(i,a,b) for(register int i=a;i>=b;--i)
#define ll long long
using namespace std;
const int maxn=1e7+10;
ll n,k,ans;
int main(){
    scanf("%lld%lld",&n,&k);
    ans=n*k;
    for(ll l=1,r;l<=n;l=r+1){//对于每一个可以整除分块的区间定义一个l和一个r
        if(l<=k)r=min((k/(k/l)),n);
        else r=n;//n>k时的判断
        ans-=(k/l)*(l+r)*(r-l+1)/2;//详情请见上面的公式
    }
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值