[bzoj4830][Hnoi2017]抛硬币——数论+拓展卢卡斯定理

题目大意:

先抛a次硬币,再抛b次硬币,求前a次正面朝上的次数比后b次正面朝上的次数多的情况数。

思路:

不难发现答案为 ∑ i = 0 a ∑ j = 0 i − 1 ( a i ) × ( b j ) \sum_{i=0}^{a}\sum_{j=0}^{i-1}{a\choose i}\times {b\choose j} i=0aj=0i1(ia)×(jb),然后将b的情况全部反过来,并将a,b接成同一个序列,答案变成了 ∑ i = b + 1 a + b ( a + b i ) \sum_{i=b+1}^{a+b}{a+b\choose i} i=b+1a+b(ia+b)
然后用组合数对称的性质将 ∑ i = a + b 2 a + b ( a + b i ) \sum_{i=\frac{a+b}{2}}^{a+b}{a+b\choose i} i=2a+ba+b(ia+b)给化成 2 a + b − 1 2^{a+b-1} 2a+b1,剩下来的部分项数不多,可以直接用拓展卢卡斯求。
由于这个题目比较特别,所以在拓展卢卡斯的时候需要注意几项:
1.因为 a + b a+b a+b的奇偶性的不同,有一个组合数要除2,这个直接在计算的时候特判一下,中国剩余的时候两个模数的结果都除以2即可,如果模数本身是2的倍数,那么在运算过程中要少乘一个2。
2.求阶乘要预处理出来。
3.有点卡常。

#include<bits/stdc++.h>

#define REP(i,a,b) for(int i=a,i##_end_=b;i<=i##_end_;++i)
#define DREP(i,a,b) for(int i=a,i##_end_=b;i>=i##_end_;--i)
#define MREP(i,x) for(int i=beg[x],v;v=to[i],i;i=las[i])
#define debug(x) cout<<#x<<"="<<x<<endl
#define fi first
#define se second
#define mk make_pair
#define pb push_back
typedef long long ll;

using namespace std;

void File(){
	freopen("bzoj4830.in","r",stdin);
	freopen("bzoj4830.out","w",stdout);
}

template<typename T>void read(T &_){
	T __=0,mul=1; char ch=getchar();
	while(!isdigit(ch)){
		if(ch=='-')mul=-1;
		ch=getchar();
	}
	while(isdigit(ch))__=(__<<1)+(__<<3)+(ch^'0'),ch=getchar();
	_=__*mul;
}

const int maxn=2e6+10;
ll fac2[maxn],fac5[maxn];

namespace ex{
	ll exgcd(ll a,ll b,ll &x,ll &y){
		if(!b){x=1,y=0;return a;}
		ll g=exgcd(b,a%b,x,y),tmp=x;
		x=y,y=tmp-a/b*y;
		return g;
	}
	ll inv(ll a,ll b){
		ll x,y;
		exgcd(a,b,x,y);
		return (x%b+b)%b;
	}
}

ll qpow(ll x,ll y,ll mod){
	if(x==1)return 1;
	if(x==mod-1)return y%2 ? -1 : 1;
	ll ret=1; x%=mod;
	while(y){
		if(y&1)ret=ret*x%mod;
		x=x*x%mod;
		y>>=1;
	}
	return ret;
}

ll Count(ll x,ll y){
	ll ret=0;
	for(;x;x/=y)ret+=x/y;
	return ret;
}

ll Fac(ll x,ll y,ll mod){
	if(!x)return 1;
	ll ret=(y==2 ? fac2[mod] : fac5[mod])%mod;
	ret=qpow(ret,x/mod,mod);
	ret=ret*(y==2 ? fac2[x%mod] : fac5[x%mod])%mod;
	return ret*Fac(x/y,y,mod)%mod;
}

ll calc(ll x,ll y,ll k,bool flag2,bool flag5){
	ll p[3]={(ll)pow(10,k),(ll)pow(2,k),(ll)pow(5,k)},b[3]={0,2,5},c[3],ret=0;
	REP(i,1,2){
		ll cnt=Count(x,b[i])-Count(y,b[i])-Count(x-y,b[i]);

		if(i==1 && flag2 && cnt)flag2=0,--cnt;
		ll mul=qpow(b[i],cnt,p[i]);
		if(i==2 && flag5)flag5=0,mul=mul*ex::inv(2,p[i])%p[i];
		mul=mul*Fac(x,b[i],p[i])%p[i];
		ll inv;
		inv=Fac(y,b[i],p[i])*Fac(x-y,b[i],p[i])%p[i];
		inv=ex::inv(inv,p[i]);
		c[i]=mul*inv%p[i];
	}
	REP(i,1,2)ret=(ret+p[3-i]*ex::inv(p[3-i],p[i])*c[i])%p[0];
	return (ret+p[0])%p[0];
}

void work(){
	ll a,b,k,ans,mod;
	while(~scanf("%lld%lld%lld",&a,&b,&k)){
		mod=pow(10,k); ans=qpow(2,a+b-1,mod);
		for(ll i=b+1;i<=(a+b)/2;++i)
			ans=(ans+calc(a+b,i,k,0,0))%mod;
		if((a+b)%2==0)ans=(ans-calc(a+b,(a+b)/2,k,1,1))%mod;
		ans=(ans+mod)%mod;
		DREP(i,k,1)printf("%d",(int)ans/(int)pow(10,i-1)%10);
		putchar('\n');
	}
}

void init(){
	fac2[0]=fac5[0]=1;
	ll mod2=pow(2,9),mod5=pow(5,9);
	REP(i,1,2e6){
		if(i%2)fac2[i]=fac2[i-1]*i%mod2;
		else fac2[i]=fac2[i-1];
		if(i%5)fac5[i]=fac5[i-1]*i%mod5;
		else fac5[i]=fac5[i-1];
	}
}

int main(){
	File();
	init();
	work();
	return 0;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值