题目描述
题目链接:https://leetcode-cn.com/problems/assign-cookies/
 Assume you are an awesome parent and want to give your children some cookies. But, you should give each child at most one cookie. Each child i has a greed factor gi, which is the minimum size of a cookie that the child will be content with; and each cookie j has a size sj. If sj >= gi, we can assign the cookie j to the child i, and the child i will be content. Your goal is to maximize the number of your content children and output the maximum number.
Note:
 You may assume the greed factor is always positive.
 You cannot assign more than one cookie to one child.
Example 1:
Input: [1,2,3], [1,1]
Output: 1
Explanation: You have 3 children and 2 cookies. The greed factors of 3 children are 1, 2, 3. 
And even though you have 2 cookies, since their size is both 1, you could only make the child whose greed factor is 1 content.
You need to output 1.
 
Example 2:
Input: [1,2], [1,2,3]
Output: 2
Explanation: You have 2 children and 3 cookies. The greed factors of 2 children are 1, 2. 
You have 3 cookies and their sizes are big enough to gratify all of the children, 
You need to output 2.
 
解题思路
典型贪心算法,小饼干先喂饱小胃口,局部最优 推到全局最优。
程序实现
class Solution {
    public int findContentChildren(int[] g, int[] s) {
        //排序,贪心 小饼干优先满足小的
        Arrays.sort(g);
        Arrays.sort(s);
        int index=0;
        for(int i=0;i<s.length;i++){
            if(index<g.length&&s[i]>=g[index]){
                index++;
            }
        }
        return index;
    }
}
                
                  
                  
                  
                  
                            
本文介绍了LeetCode上的分发饼干问题,每个孩子有最小需求的饼干大小,目标是最大化满足的孩子数量。通过贪心策略,优先满足需求较小的孩子,从而达到全局最优解。文章提供了详细的解题思路和程序实现。
          
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					375
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            