为了更好的理解逻辑回归,计算它的预测来回顾,下图如何以Logistic回归模型的输出分两步计算,第一步中,将z=w*x+b,将sigmoid函数g应用于这个值z,这是Z状结肠函数的公式。如果你把Z状结肠函数的定义插入Z的定义,然后你会发现如右图所示的函数,这类似于上篇文章中的函数,可能是0.7或0.3,如果你想让学习算法预测,y的值是0还是1,设置一个阙值,在这个阙值之上你预测y=1,或者将预测设置为=1,下边的预测=0,所以一个常见的选择是选择0.5的阙值,所以如果f(x)>=0.5,那么预测y=1或者如果f(x)<=0.5,那么预测值=0。
当f(x)>=0.5,即g(z)>=0.5,此时有一个Z状结肠函数。所以g(z)>=0.5,当z>=0时,只要z在轴的右半部分,最后当z>或=0时,Z=W*X+b,所以z>=0,即W*X+b>=0,所以总结一下,无论何时w点,模型都预测了一个X+b>=0,反过来说,当W*X+b<0时,算法预测y=0
所以考虑到这一点,现在让我们可视化模型是如何做出预测的
举一个分类问题的例子,其中有两个特性X1和X2,而不仅仅是一个功能,还有一个训练集,小红叉代表积极的例子,蓝色的小圆圈代表否定的例子,所以红叉对应y=1,蓝色的圆圈对应的y=0,Logistic回归模型将使用该函数进行预测,f(x)=g(z)=g(W1X1+W2X2+b),因为我们有两个特点,X1和X2,参数的值为W1=1,W2=1,b=-3,让我们看看Logistic回归是如何做出预测的,尤其是算出wx+b>=0时,当wx+b<0时,有一条非常有趣的线可以看,即wx+b=0,原来这条线也叫决策边界,因为在这条线上几乎是中立的,现在y=0还是y=1,对于参数W1的值,我们在下面写了两个,这个判定边界是X1+X2-3,所以当它=0时,对应的线X1+X2=3,就是紫色的线,所以这条线就是决策边界。如果特征X在这条线的右侧,逻辑回归可以预测,在这条线的左边,逻辑回归预测为零。换句话说,我们刚才看到的是逻辑回归的决策边界,当参数W1=1时,W2=1,b=-3,如果你有不同的参数选择,决策边界现在将是一条不同的线。
下面看一个更复杂的例子
决策边界不再是直线,和前边一样,十字表示类y=1,小圆圈表示类y=0,我们已经了解了如何在线性回归中使用多项式,那么也可以在逻辑回归中做同样的事情,所以把Z=W1*X1²+W2*X2²+b,将多项式特征转化为Logistic回归,假设我们最终选择W1=1,W2=1,b=-1,所以Z=X1²+X2²-1,当Z=0时,前面的判定边界将对应于,所以这个表达式=0,当X1²+X2²=1,如果你在下边的图表上画,对应X1²+X2²=1的曲线是这个圆圈,当X1²+X2²>=1时,那是圆圈外的这个区域,就在那时你预测y是1,当X1²+X2²<1时那是圆圈内的这个区域,你预测y=0。
比这些更复杂的决策边界
通过使用更高阶的多项式来做到这一点,Z=W1X1+W2X2+W3X1²+W4X1X2+W5X2²,然后你可能会得到更复杂的决策边界,该模型可以定义决策边界,比如这个例子和这样的椭圆,或者使用不同的参数选择,甚至可以得到更加复杂的决策边界,可能看起来像这样的函数,所以这是一个更复杂的决策边界的例子,比我们之前看到的,这个Logistic回归的实现将预测这个形状内的y=1,在这个形状外预测y=0,所以有了这些多项式特征,可以得到更复杂的决策边界。逻辑回归可以学习拟合相当复杂的数据,尽管如果你不包括这些高阶多项式,所以如果你使用的唯一特性是X1,X2,X3,以此类推,那么Logistic回归的决策边界总是线性的,永远是一条直线。