人工神经网络的基本属性,神经网络四个基本属性

本文探讨了神经网络的基本概念,包括人工神经网络的定义和工作原理。文章详细解释了BP神经网络中net.iw{1,1}的含义,指出其代表输入层和隐藏层之间的权重。此外,还比较了神经网络和深度学习的差异,并讨论了复合性神经网络的优点。数据挖掘被定义为从大量数据中发现模式的过程,而神经网络因其特性在数据挖掘中发挥重要作用。" 113087624,10295743,Visual Studio 2019新增MFC ActiveX和Typelib向导,"['MFC开发', 'ActiveX', '控件', 'Visual Studio', '向导']
摘要由CSDN通过智能技术生成

什么是神经网络

神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。

人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。

在工程与学术界也常直接简称为“神经网络”或类神经网络。

谷歌人工智能写作项目:神经网络伪原创

BP神经网络中net.iw{1,1} 两个1分别代表什么意思??

写作猫

第一个1是指网络层数(net.numLayers);第二个1是指网络输入个数(net.numInputs);从第j个输入到到第i层的权重的权重矩阵(或nullmatrix[])位于{i,j};神经网络对象IW属性:该属性定义了网络输入和各输入层神经元之间的网络权值,属性值为NxNi维的单元数组,其中,N为网络的层数,Ni为网络的输入个数。

如果net.inputConnect(i,j)为1,即第i层上的各神经元接收网络的第j个输入,那么在单元{i,j}中将存储它们之间的网络权值矩阵。

该矩阵的行数为第i层神经元的个数(net.layers{i}.size),列数为第j个输入的维数(net.inputs{j}.size)与输入延退拍数࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值