Hopfield神经网络用python实现讲解?
神经网络结构具有以下三个特点:神经元之间全连接,并且为单层神经网络。每个神经元既是输入又是输出,导致得到的权重矩阵相对称,故可节约计算量。
在输入的激励下,其输出会产生不断的状态变化,这个反馈过程会一直反复进行。
假如Hopfield神经网络是一个收敛的稳定网络,则这个反馈与迭代的计算过程所产生的变化越来越小,一旦达到了稳定的平衡状态,Hopfield网络就会输出一个稳定的恒值。
Hopfield网络可以储存一组平衡点,使得当给定网络一组初始状态时,网络通过自行运行而最终收敛于这个设计的平衡点上。
当然,根据热力学上,平衡状态分为stablestate和metastablestate,这两种状态在网络的收敛过程中都是非常可能的。为递归型网络,t时刻的状态与t-1时刻的输出状态有关。
之后的神经元更新过程也采用的是异步更新法(Asynchronous)。Hopfield神经网络用python实现。
谷歌人工智能写作项目:神经网络伪原创
Matlab里的神经网络是什么意思啊,我是新手,谁能简单通俗地解释下啊?谢谢了!!!
写作猫。
所谓神经网络算法顾名思义是模拟生物神经网络而产生的一种算法,首先需要用一些已知的数据输入到神经网络中,使它知道什么样的数据属于哪一类(训练),然后将未知的数据输入进去,神经网络通过已知的数据对其进行判断来完成分类(分类)。
可以用来进行图像识别、分类;数据预测;曲线拟合等。推荐找本机器学习,人工智能方面的书看。
cnn全称是什么?
CNN的全称是ConvolutionalNeuralNetwork,是一种前馈神经网络。由一个或多个卷积层、池化层以及顶部的全连接层组成,在图像处理领域表现出色。
本文主要讲解CNN如何在自然语言处理方面的运用。卷积神经网络主要用于提取卷积对象的局部特征,当卷积对象是自然语言文本时,比如一个句子。
此时其局部特征是特定的关键词或关键短语,所以利用卷积神经网络作为特征提取器时相当于词袋模型,表示一个句子中是否出现过特定的关键词或关键短语。用在分类任务上,相当于提取出对于分类最有用的特征信息。
cnn简介:现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。
在图像处理中,往往把图像表示为像素的向量,比如一个1000×1000的图像,可以表示为一个1000000的向量。在上一节中提到的神经网络中,如果隐含层数目与输入层一样,即也是1000000时。
谁能详细讲解一下TensorFlow Playground所展示的神经网络的概念
。
应该是用神经网络解决一个分类或回归问题的图形化展示视觉效果上确实惊人,感叹真乃炫技之作虽说只是个教学性质的演示,但这种视觉展示方式实在是太自然了,我觉得生产性质的应用也应该/必须这么弄:图形化,Web化,实时。
我想只要把JavaScript版的NN库替换成服务器端真正的Tensorflow,再加上一个通讯机制,就差不多了。
神经网络的准确率是怎么计算的?
其实神经网络的准确率的标准是自己定义的。我把你的例子赋予某种意义讲解:1,期望输出[1001],每个元素代表一个属性是否存在。
像着4个元素分别表示:是否肺炎,是否肝炎,是否肾炎,是否胆炎,1表示是,0表示不是。2,你的神经网络输出必定不可能全部都是输出只有0,1的输出。
绝大部分是像[0.99680.00000.00010.9970]这样的输出,所以只要输出中的某个元素大于一定的值,例如0.7,我们就认为这个元素是1,即是有某种炎。
否则为0,所以你的[0.99680.00000.00010.9970]可以看成是[1,0,0,1],。
3,所以一般神经网络的输出要按一定的标准定义成另一种输出(像上面说的),看调整后的输出和期望输出是否一致,一致的话算正确,不一致算错误。
4,用总量为n的检验样本对网络进行评价,输出调整后的输出,统计错误的个数,记为m。所以检验正确率可以定义为n/m。
BP神经网络
没有数据还真一眼看不出你的是出了什么原因,不过你这个应该是做模式识别吧,识别它是哪一类。
一般做模式识别会用Patternnet,而不用feedforwardnet,主要是Patternnet的输出是在0,1之间的。
楼主可以借鉴matlab自带的螃蟹识别例子,你的matlab路径\toolbox\nnet\nndemos\classify_crab_demo.m《神经网络之家》上也有一篇讲解的例子:一个神经网络模式识别的例子------螃蟹识别,楼主可以看看。
更详细的需要楼主贴出数据了。