1、对于多元高斯分布,推导边缘分布 p(xA) 和 p(xB),其中 A 和 B 是联合高斯随机变量 x1, x2, …, xn 的子集。
要计算边缘分布,我们只需从均值和协方差矩阵中读取相应的行和列。
2、设y服从均值为μ、协方差矩阵为Σ的正态分布,其中Σ = LLT。证明可以按以下方式得到样本y:x服从均值为0、协方差矩阵为单位矩阵I的正态分布;y = Lx + μ。
设 $ y = Lx + \mu $。则,
$$ E[y] = LE[x] + \mu = 0 + \mu = \mu $$
同样,
$$ \text{cov}(y) = L \, \text{cov}(x) \, L^T + 0 = L I L^T = L L^T = \Sigma $$
由于 $ y $ 是高斯随机变量的仿射变换,$ y $ 也服从正态分布,即
$$ y \sim \mathcal{N}(\mu, \Sigma) $$
3、给定一个数据点 y ∈ Rd 和一个超平面 θ ⋅x + θ0 = 0,计算该点到超平面的欧几里得距离。
设 $ x $ 是超平面上的一个点,即确保它满足方程 $ \theta \cdot x + \theta_0 = 0 $。为了找到该点到超平面的欧几里得距离,我们构造一个向量 $ y - x $ 并将其投影到与平面垂直的唯一向量上。
4、给定一个原始线性规划(LP)问题:在约束条件 Ax <= b,x >= 0 下求 min cᵀ x,写出该线性规划的对偶形式。
原始线性规划中的每个变量对应对偶线性规划中的一个约束条件,反之亦然。
原始问题是最小化问题,所以对偶问题是最大化问题。
原始约束条件是小于等于,所以对偶变量大于等于零。
设对偶变量为 $ y $,对偶问题的目标函数是最大化 $ b^\top y $,约束条件为 $ A^\top y \geq c $,$ y \geq 0 $。
即对偶问题为在约束条件
$$
A^\top y \geq c, \quad y \geq 0
$$
下求
$$
\max \, b^\top y
$$
5、证明径向基函数(RBF)核等同于计算两个无限维特征向量之间的相似度。
径向基函数核可以使用多项式定理展开。假设 $\sigma = 1$,RBF 展开意味着有无限个维度,这表明径向基函数核相当于计算两个无限维特征向量之间的相似度。
6、验证学习率调度 ηk = (τ0 + k)–κ 满足罗宾斯 - 门罗条件。
要证明学习率满足 罗宾斯 - 门罗条件 ,需要针对非负的 $\tau_0$ 和 $\kappa \in (0.5, 1]$ 证明以下内容:
$$
\sum_{t=0}^{\infty} \frac{1}{(t + \tau_0)^\kappa} < \infty
$$
根据 幂级数收敛性 ,这是成立的。
7、计算K近邻(KNN)回归器的运行时间和内存复杂度。
时间与空间复杂度分析
运行时间复杂度
对于每个查询 $ q $,需要执行一个排序操作,其时间复杂度为 $ O(N \log N) $(其中 $ N