Leon:CDA数据分析师一级持证人,某电商平台数据分析专家,曾经在顶级的美妆集团任职数据分析主管,拥有多年的电商行业数分经验,擅长通过数据深度数据分析驱动业务增长,曾经参与和主导过多个大型产品功能落地。
一、电商行业数据分析师的工作内容
简单说一下我的工作内容,大家根据我的工作内容的描述,了解电商行业数据分析师的能力要求。
我现在在电商平台工作,我们能接触到的数据维度非常丰富。比如,从用户打开APP的那一刻起,他们的浏览和点击行为数据都会被记录,包括支付和订单行为。
我们还可以通过用户的收货地址和购物习惯来推测他们的性别、所在城市的等级,以及购物的用途——是送礼、买给父母还是自用。基于这些数据,我们可以给用户打上各种标签,并进行多维度的分析,比如商品分析、商家分析、用户体验分析和流量转化分析。这些数据支撑我们进行深入和广泛的分析。
随着数据的积累,对我们的数据分析能力提出了更高的要求。比如,当我们要上线产品功能迭代或进行流量分发时,我们会进行AB测试来验证效果。AB测试的底层逻辑是假设检验和方差分析,这就要求我们不仅要掌握统计学知识,还要能在实际工作中应用这些知识。
随着对电商平台业务理解的加深,我开始进行数据解读、策略研究,并撰写高价值的分析报告,对公司业务产生影响。
到了这个阶段,公司对我的期望从个人产出转变为能否将我的能力和经验复制给其他同事,这给了我一个从资深分析师向管理岗位转变的机会。现在,我将自己定位为复合型人才:一方面,我需要实现复杂的分析场景,推动业务增长;另一方面,我还要确保团队产出高质量的数据分析报告。这就是我近几年的发展路径。
二、电商数据分析要具备的4点硬实⼒
要掌握的数据分析技能并不多。随着工作经验的积累,我们对各种工具的学习和应用也会增加,但数据分析的技术壁垒或难度并没有特别大。可以分成几个部分来谈:
1、报表能⼒
如果大家在数据分析师这一行,应该对这些技术都很熟悉。其实,首先是报表能力,即如何将数据通过可视化或表格展示出来,并提升其美观度。
同时,在报表中加入一些说明文档,降低运营团队和领导使用报表的难度。其实,做到这一点已经足够了。市面上有很多可视化软件,比如微软的Power BI、阿里的Quick BI等。这些软件功能大同小异,都是将数据转化为可视化的工具。大家不需要花太多时间学习软件,而应该更多地研究在不同业务场景下,如何选择合适的图表来展示数据。这需要不断尝试和积累经验,以达到更好的可视化效果。
2、SQL能⼒
在我看来,SQL是所有数据分析工具中最核心的技能之一。因为绝大多数公司的数据都存储在数据库中,我们需要通过SQL来进行数据处理、查询和计算。这时候,对SQL能力的要求就比较高了。我们不仅要掌握基础的SQL写法,还要学会如何优化SQL语句。
比如,一个业务场景可能需要我们编写几百行的SQL代码。有时,这样的查询可能需要半个小时甚至一个小时才能执行完成。但如果我们能运用子查询、连接以及其他优化方法,就能将执行时间缩短到几分钟或十分钟。这绝对是一项非常有用的技能。
3、统计和分析方法
上面提到了AB测试,这就需要我们运用假设检验和方差分析。我们还会进行相关分析、回归分析,以及应用一些方法论,比如RFM模型、波士顿矩阵,还有各种维度拆解分析等。
这些都需要我们在业务分析中不断实践和应用。这些内容都是CDA数据分析师一级中重点考察的部分,真的建议所有想做数据分析师的小伙伴,都去考一下CDA数据分析师,这对数据分析能力是个全面的提升,越早考收获越大。扫码CDA认证小程序,获取更多资料。
4、业务理解和数据逻辑
这也是最重要的部分。即使我们掌握了高级的软件技能,能够快速完成数据分析,甚至使用算法和方法展示数据,但从数据到结论的转化需要我们深入理解业务。因此,对业务的理解至关重要。