题意
给你一个无向图(可能不连通,可能有重边),每条边有个限重,货车运输的时候不能超过这个限重,现在问对于一个起点和终点,问货车最多可以运多少货物。
思路
这道题就是让我们求一个瓶颈路,并且这个瓶颈路一定在最大生成森林上面,用反证法可以知道不在最大生成森林上面的一定是更劣的答案。
所以在最大生成森林上面跑树剖就ok了。
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define root 1,dfs_clock,1
#define ls l,m,o<<1
#define rs m+1,r,o<<1|1
inline void read(int& x){
char c=getchar();int p=1,n=0;
while(c<'0'||c>'9'){if(c=='-')p=-1;c=getchar();}
while(c>='0'&&c<='9'){n=n*10+c-'0';c=getchar();}
x=p*n;
}
const int maxn=10000+10,maxm=50000*2+10,inf=1e9;
struct edge2{
int v,next,w;
}a[maxm];
int h[maxn],tot;
void add_e(int x,int y,int z){
a[tot].v=y;
a[tot].next=h[x];
a[tot].w=z;
h[x]=tot++;
}
struct edge{
int u,v,w;
}b[maxm];
int n,m;
inline bool cmp(edge a,edge b){
return a.w>b.w;
}
int f[maxn];
int find(int x){
if(f[x]==x)return x;
return f[x]=find(f[x]);
}
inline void merge(int u,int v){
int x=find(u);
int y=find(v);
if(x!=y)f[x]=y;
}
int bian[maxm];//debug
inline void kruskal(){
for(int i=1;i<=n;i++)
f[i]=i;
memset(h,-1,sizeof h);tot=0;
for(int i=1;i<=m;i++){
int u=b[i].u,v=b[i].v;
if(find(u)!=find(v)){
bian[i]=1;
merge(u,v);
add_e(u,v,b[i].w);
add_e(v,u,b[i].w);
}
}
}
int sz[maxn],son[maxn],w[maxn],fa[maxn],dep[maxn];
int tid[maxn],rank[maxn],top[maxn];
int jl[maxn],vis[maxn];
int dfs_clock;
void dfs1(int u){
sz[u]=1;son[u]=0;vis[u]=1;
for(int i=h[u];~i;i=a[i].next){
int v=a[i].v;
if(v==fa[u])continue;
fa[v]=u;dep[v]=dep[u]+1;w[v]=a[i].w;
dfs1(v);sz[u]+=sz[v];
if(sz[v]>sz[son[u]])son[u]=v;
}
}
void dfs2(int u,int anc){
tid[u]=++dfs_clock;rank[tid[u]]=u;top[u]=anc;
if(son[u]){
dfs2(son[u],anc);
for(int i=h[u];~i;i=a[i].next){
int v=a[i].v;
if(v==fa[u]||v==son[u])continue;
dfs2(v,v);
}
}
}
int ql,qr;
int seg[maxn*4];
inline void pushup(int o){
seg[o]=min(seg[o<<1],seg[o<<1|1]);
}
int query(int l,int r,int o){
if(ql<=l&&r<=qr)
return seg[o];
int m=l+(r-l)/2;
int mi=inf;
if(ql<=m)mi=min(mi,query(ls));
if(qr>m)mi=min(mi,query(rs));
return mi;
}
void build(int l,int r,int o){
if(l==r){
seg[o]=w[rank[l]];
return;
}
int m=l+(r-l)/2;
build(ls);
build(rs);
pushup(o);
}
inline int ask(int x,int y){
int mi=inf;
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]])
swap(x,y);
ql=tid[top[x]];qr=tid[x];
mi=min(mi,query(root));
x=fa[top[x]];
}
if(dep[x]>dep[y])
swap(x,y);
ql=tid[x]+1;qr=tid[y];
//这里为什么tid[x]+1?就是为了去掉w[lca(x,y)]对答案的影响。
mi=min(mi,query(root));
return mi;
}
void debug(){
for(int i=1;i<=m;i++)
if(bian[i])
printf("%d %d %d\n",b[i].u,b[i].v,b[i].w);
}
int main(){
// freopen("货车运输.in","r",stdin);
read(n);read(m);
for(int i=1;i<=m;i++){
read(b[i].u);read(b[i].v);read(b[i].w);
}
sort(b+1,b+1+m,cmp);
kruskal();
// debug();
int cnt=0;
for(int i=1;i<=n;i++)
if(!vis[i]){
w[i]=inf;
jl[++cnt]=i;//原图有可能是森林。
dfs1(i);
}
dfs_clock=0;
for(int i=1;i<=cnt;i++)
dfs2(jl[i],jl[i]);//对于每一棵树,都要拉一遍重链。
build(root);
int q;read(q);
for(int i=1;i<=q;i++){
int x,y;
read(x);read(y);
if(find(x)!=find(y))
printf("-1\n");
else
printf("%d\n",ask(x,y));
}
return 0;
}
后记
边权下放又打错了一次,记得w[lca(x,y)]是不能放进线段树考虑的!