YOLOv11 改进 - 注意力机制 | EffectiveSE 高效挤压激励模块:单全连接层设计破解信息丢失难题,增强通道特征表征

部署运行你感兴趣的模型镜像

前言

本文介绍了无锚实例分割方法CenterMask及改进骨干网络VoVNetV2,重点阐述了EffectiveSE(eSE)模块及其在YOLOv11中的结合应用。eSE是改进的通道注意力模块,基于SE模块,通过去除维度压缩和简化结构,减少计算复杂性与信息丢失。该模块先对输入特征图全局平均池化,再经全连接层和sigmoid激活函数生成注意力权重,最后应用到特征图。我们将eSE模块集成进YOLOv11,替代部分原有模块。实验表明,eSE模块也提升模型效率和准确率。

文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总

专栏链接: YOLOv11改进专栏

介绍

image-20240723141955037

摘要

我们提出了一种简单而高效的无锚实例分割方法,称为CenterMask,它在无锚单阶段目标检测器(FCOS [33])中添加了一个新颖的空间注意力引导掩码(SAG-Mask)分支,类似于Mask R-CNN [9]。在FCOS目标检测器中插入SAG-Mask分支,该分支使用空间注意力图在每个检测框上预测分割掩码,从而有助于关注有用的像素并抑制噪声。我们还提出了改进的骨干网络VoVNetV2,并采用了两种有效策略:(1)残差连接以缓解较大VoVNet [19]的优化问题;(2)有效的挤压-激励(eSE)处理原始SE的通道信息丢失问题。结合SAG-Mask和VoVNetV2,我们设计了针对大模型和小模型的CenterMask和CenterMask-Lite。使用相同的ResNet-101-FPN骨干网络,CenterMask达到了38.3%的AP,超过了所有以前的最先进方法,同时速度更快。CenterMask-Lite在Titan Xp上以超过35fps的速度也大幅超越了最先进的方法。我们希望CenterMask和VoVNetV2可以分别作为实时实例分割和各种视觉任务的骨干网络的坚实基准。代码可在https://github.com/youngwanLEE/CenterMask获取。

文章链接

论文地址:</

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔改工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值