前言
本文介绍了无锚实例分割方法CenterMask及改进骨干网络VoVNetV2,重点阐述了EffectiveSE(eSE)模块及其在YOLOv11中的结合应用。eSE是改进的通道注意力模块,基于SE模块,通过去除维度压缩和简化结构,减少计算复杂性与信息丢失。该模块先对输入特征图全局平均池化,再经全连接层和sigmoid激活函数生成注意力权重,最后应用到特征图。我们将eSE模块集成进YOLOv11,替代部分原有模块。实验表明,eSE模块也提升模型效率和准确率。
文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLOv11改进专栏
文章目录
介绍

摘要
我们提出了一种简单而高效的无锚实例分割方法,称为CenterMask,它在无锚单阶段目标检测器(FCOS [33])中添加了一个新颖的空间注意力引导掩码(SAG-Mask)分支,类似于Mask R-CNN [9]。在FCOS目标检测器中插入SAG-Mask分支,该分支使用空间注意力图在每个检测框上预测分割掩码,从而有助于关注有用的像素并抑制噪声。我们还提出了改进的骨干网络VoVNetV2,并采用了两种有效策略:(1)残差连接以缓解较大VoVNet [19]的优化问题;(2)有效的挤压-激励(eSE)处理原始SE的通道信息丢失问题。结合SAG-Mask和VoVNetV2,我们设计了针对大模型和小模型的CenterMask和CenterMask-Lite。使用相同的ResNet-101-FPN骨干网络,CenterMask达到了38.3%的AP,超过了所有以前的最先进方法,同时速度更快。CenterMask-Lite在Titan Xp上以超过35fps的速度也大幅超越了最先进的方法。我们希望CenterMask和VoVNetV2可以分别作为实时实例分割和各种视觉任务的骨干网络的坚实基准。代码可在https://github.com/youngwanLEE/CenterMask获取。
文章链接
论文地址:</
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



