前言
本文提出新型频率动态卷积(FDConv),旨在解决传统动态卷积权重频率响应相似、参数开销大且适应性有限的问题。FDConv通过在傅里叶域学习固定参数预算,将其划分为基于频率的分组,构建频率多样化的权重。同时设计了核空间调制(KSM)和频段调制(FBM),分别在空间和频率域提升适应性。大量实验表明,FDConv应用于ResNet - 50时,仅增360万参数就能实现更优性能。我们将FDConv集成进YOLOv11,替换部分模块,在目标检测、分割和分类任务中验证了其有效性,为现代视觉任务提供灵活高效的解决方案。
文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLOv11改进专栏
介绍

订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



