打开cmd进入输入conda activate pytorch进入环境后Conda list 查看conda中的安装包的版本,查看pytorch版本是不是下载的cpuonly版本
原因可能是若是清华源的路径中检索不到搜索的相应cuda版本的pytorch,便会默认下载cpu版本的pytorch
若是此种情况可以先执行conda uninstall pytorch 卸载已经安装的pytorch版本然后去Index of /anaconda/cloud/pytorch/win-64/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror网站中下载对应的cuda版本的pytorch和torchversion
然后再cmd中执行conda config --remove-key channels 恢复默认源
执行以下命令重新将清华源路径添加到channels中
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
添加清华源到channel,注意添加时把https改成http,否者可能会出现源路径错误
然后在cmd中执行conda install D:\pytorch-1.3.0-py3.6_cuda92_cudnn7_0.tar.bz2和conda install D:\pytorch-1.3.0-py3.6_cuda92_cudnn7_0.tar.bz2安装已经下载好的pytorch包
根据自己的版本和下载文件的路径修改,记住路径中不要出现空格和汉字,建议直接放在D盘下,减少出错的几率
安装完成后进入python界面,import torch 若是不报错则说明pytorch已经安装成功
执行torch.cuda.is._available() 若是返回Ture则说明可以使用GPU运行试验了