/*****************************************************************************************
*description:汉诺塔问题
* n代表汉诺塔游戏中从小到小到大放置的的n个盘子,
* 开始时,所有盘子都放置在左边的柱子上,按游戏要求将其全部移动至右边,
* 打印最优移动轨迹。
* n个盘子共需要移动2^i-1次
*description:汉诺塔问题
* n代表汉诺塔游戏中从小到小到大放置的的n个盘子,
* 开始时,所有盘子都放置在左边的柱子上,按游戏要求将其全部移动至右边,
* 打印最优移动轨迹。
* n个盘子共需要移动2^i-1次
****************************************************************************************/
#include<iostream>
#include<vector>
#include<string>
using namespace std;
//方法:
// step1:把圆盘1~(n-1)从from移动到mid
// step2:把圆盘n从from移动到to
// step3:把圆盘1~(n-1)从mid移动到to
void process_1(int n, string from, string mid, string to)
{
if (n == 1)
cout << from << " ---> " << to << endl;
else
{
process_1(n-1, from, to, mid);
process_1(1, from, mid, to);
process_1(n-1, mid, from, to);
}
}
void printTrack(int n)
{
if (n == 0)
return;
process_1(3, "left", "mid", "right");
}
int main_06_1()
{
printTrack(3);
return 0;
}
/*****************************************************************
*description:汉诺塔进阶问题
* 给定数组arr,只含1、2、3,代表圆盘状态,如arr[i]=1,表示i圆盘在左柱
* 如果arr是汉诺塔最优轨迹上的状态,则返回是第几个状态,否则返回-1
*****************************************************************/
//方法1:时间复杂度O(N),空间复杂度O(N)
// 对圆盘1~i来说,目标为从from到to,分三种情况:
// 1.圆盘i在from上,不能判定步骤1是否完成,需进一步考虑1~(i-1)的情况,目标为from到mid
// 2.圆盘i在to上,步骤1和2已经完成,已完成2^(i-1)步,再考虑1~(i-1),目标从mid到to
// 3.圆盘i在mid上,最优轨迹不存在这种情况,返回-1
int process_2(vector<int> arr, int i, int from, int mid, int to)
{
if (i == -1)
return 0;
if (arr[i] != from && arr[i] != to)
return -1;
if (arr[i] == from)
return process_2(arr, i-1, from, to, mid);
else
{
int rest = process_2(arr, i-1, mid, from, to);
if (rest == -1)
return -1;
return (1 << i) + rest;
}
}
int HanoState_1(vector<int> arr)
{
if (arr.size() == 0)
return -1;
return process_2(arr, arr.size()-1, 1, 2, 3);
}
//方法2:时间复杂度O(N),空间复杂度O(1)
//方法1改写为非递归形式。
int HanoState_2(vector<int> arr)
{
if (arr.size() == 0)
return -1;
int from = 1;
int mid = 2;
int to = 3;
int i = arr.size() - 1;
int res = 0;
int tmp = 0;
while(i >= 0)
{
if (arr[i] != from && arr[i] != to)
return -1;
if (arr[i] == to)
{
res += 1 << i;
tmp = from;
from = mid;
}
else
{
tmp = to;
to = mid;
}
mid = tmp;
i--;
}
return res;
}
int main_06_2()
{
vector<int> arr;
arr.push_back(2);
arr.push_back(1);
cout << HanoState_2(arr);
return 0;
}